Posts Tagged ‘IEEE’

24 February, 2017

My last blog post was written a few years ago before attending a conference when I was reminiscing about the 10-year history of SystemVerilog. Now I’m writing about going to another conference, DVCon, and being part of a panel reminiscing about the 15-year history of SystemVerilog and envisioning its future. My history with SystemVerilog goes back much further.

Soul of a New MachineMy first job out of college was working with a group of Data General (DG) engineers made public in the book, Soul of a New Machine, by Tracy Kidder in 1981. Part of my job was writing a program that simulated the microcode of the CPUs we designed. Back then, there were no hardware description languages and you had to hard code everything for each CPU. If you were lucky you could reuse some of the code for the user interface between projects. Later, DG came up with a somewhat more general-purpose simulation language. It was general-purpose in the sense that it could be used for a wider range of projects based on the way DG developed hardware. But getting it to work in another company’s environment would have been a challenge.  By the way, Badru Agarwala was the DG simulation developer I worked with who later founded the Verilog simulation companies Frontline and Axiom. He now manages the Calypto division at Mentor Graphics.

Many other processor companies like DEC, IBM and Intel had their own in-house simulation languages or were in the process of developing one because no commercially viable technologies existed. Eventually, Phil Moorby at Gateway Design began developing the Verilog language and simulator. One of the benefits of having an independent language, although not an official standard yet, was you could now share or bring in models from outside your company. This includes being able to hand off a Verilog netlist to another company for manufacturing. Another benefit was that companies could now focus on the design and verification of their products instead of the design and verification of tools that design and verify their products.

I evaluated Verilog in its first year of release back in 1985/1986. DG decided not to adopt Verilog at that point, but I liked it so much I left DG and joined Gateway Design as one of its first application engineers. Dropping another name, Karen Bartleson was one of my first customers as a CAD manager working at UTMC. She recently took the office of President and CEO of the IEEE.

IEEEFast forward to the next decade, when Verilog became standardized as IEEE 1364-1995. But by then it had already lost ground in the verification space. Companies went back to developing their own in-house verification solutions. Sun Microsystems developed Vera and later released it as a commercial product marketed by Systems Science. Arturo Salz was one of its developers and will be on the DVCon panel with me as well. Specman was developed for National Semiconductor and a few other clients and later marketed by Verisity. Once again, we had the problem of competing independent languages and therefore limiting the ability to share or acquire verification models. So, in 1999, a few Gateway alums and others formed a startup which I joined a year later hoping to consolidate design and verification back into one standard language. That language was SUPERLOG and became the starting point for the Accellera SystemVerilog 3.0 standard in 2002, fifteen years ago.

IEEE Std 1800-2012There are many dates you could pick for the start of SystemVerilog. You could claim it couldn’t exist until there was a simulator supporting some of the features in the standard. For me, it started when I first read an early Verilog Language Reference Manual and executed my first initial block 31 years ago. I’ve been using Verilog almost every day since. And now all of Verilog is part of SystemVerilog. I’ve been so much a part of the development of the language from its early beginnings; that’s why some of my colleagues call me “The Walking LRM”. Luckily, I don’t dream about it. I hope I never get called “The Sleeping LRM”.

So, what’s next for SystemVerilog? Are we going to repeat the cycle of fragmentation and re-consolidation? Various extensions have already begun showing up in different implementations. SystemVerilog has become so complex that no one can keep a good portion of it in their head anymore. It is very difficult to remove anything once it is in the LRM. Should we start over? We tried to do that with SUPERLOG, but no one adopted it until it was made fully backward compatible with Verilog.

The Universal Verification Methodology (UVM) was designed to cut down the complexity of learning and using SystemVerilog. There are now a growing number of sub-methodologies for using the UVM because the UVM itself has exploded in complexity  (UVM Framework and Easier UVM to name a couple). I have also taken my own approach when teaching people SystemVerilog by showing a minimal subset (See my SystemVerilog OOP for UVM Verification course).

DVConI do believe in the KISS principle of Engineering and I hope that is what prevails in the next version of SystemVerilog, whether we start over or just make refinements. I hope you will be able to join the discussion with others and me at the DVCon panel next week, or in the forums in the Verification Academy, or on Twitter.

-Dave

, , , , , , , , , , , ,

15 December, 2016

Technical Program is Live

For the past several months, the DVCon U.S. Steering Committee has been meeting to craft a compelling event of technical papers, panels, keynotes, poster sessions and more for you.  With the hard work of authors who supply this content and the Technical Program Committee that reviews and selects from this content, a 4-day event schedule is now published.  You can find the event schedule here.

I am pleased to chair DVCon U.S. 2017 and work with such an august body of people – from the electronic design automation industry, design and verification practitioners and professionals from large systems houses to small consultancies – all who work hard for you to make this happen.  As has been the tradition of DVCon U.S. the past several years, the event starts with Accellera Day on Monday (Feb 27th) followed by two days of paper presentations, keynotes, panels and an exhibition.  The exhibition starts Monday, Accellera Day.  The last day of DVCon U.S. features a full day of tutorials split in to half-day parts.

Accellera Day

DVCon U.S. will feature something for advanced users and those who may be more novice.  The conference will showcase emerging standards and updates to those standards well used.  On Monday, Accellera Day, DVCon U.S. begins with a tutorial devoted to work underway within Accellera on a new standard, “Portable Stimulus,” that is set to give design and verification engineers a boost in overall design and verification productivity.  Given the work by the Accellera Portable Stimulus Working Group to put as much of the standard in place that it can, this tutorial, Creating Portable Stimulus Models with the Upcoming Accellera Standard, is sure to be an important educational opportunity.  If you are a user of UVM (Universal Verification Methodology) you will find the Portable Stimulus standard is set to remove many of the limitations of reuse at the subsystem and full-chip level and address the lack of portability across execution platforms.  Are you ready for Portable Stimulus?  You will be ready after attending this tutorial.

As the Monday luncheon evolves, I anticipate a moderated panel discussion hosted by Accellera on the emerging Portable Stimulus standard based on what you learned in the morning session.  As lunch ends, two parallel tutorials will start, one on IEEE P1800.2™ (aka UVM) and the other on System C design and verification advances.  Accellera Day is a great event to learn about the latest in the evolution of standards coming from Accellera and the IEEE.

Special Session

DVCon U.S. will make one departure from prior years’ programs and offer a special session on Tuesday on Trends in Functional Verification: A 2016 Industry Study presented by Harry Foster.  Harry has been reporting on the 2016 Wilson Research Group Study here at the Verification Horizon’s BLOG, and he has shared regional information at DVCon Europe and DVCon India on adoption and use of design and verification tools, technology and standards.  At DVCon U.S. he will pull all this together to show trends and offer predictions for the future.

There is much more to DVCon U.S. 2017 that I think you will find useful.  I leave it to you to explore the program more to discover this for yourself.  And if you can make it to DVCon U.S., registration is also open with advanced rates available until January 26th.  I hope to see you there!

, , , , , , ,

21 November, 2016

ASIC/IC Power Trends

This blog is a continuation of a series of blogs related to the 2016 Wilson Research Group Functional Verification Study (click here).  In my previous blog (click here), I presented our study findings on various verification language and library adoption trends. In this blog, I focus on power trends.

Today, we see that about 72 percent of design projects actively manage power with a wide variety of techniques, ranging from simple clock-gating, to complex hypervisor/OS-controlled power management schemes (see Figure 1). This is essentially unchanged from our 2014 study.

BLOG-2016-WRG-figure-11-1

Figure 1. ASIC/IC projects working on designs that actively manage power

Figure 2 shows the various aspects of power-management that design projects must verify (for those 72 percent of design projects that actively manage power). The data from our study suggest that many projects are moving to more complex power-management schemes that involve software control. This adds a new layer of complexity to a project’s verification challenge, since these more complex power management schedules often require emulation to fully verify.

BLOG-2016-WRG-figure-11-2

Figure 2. Aspects of power-managed design that are verified

Since the power intent cannot be directly described in an RTL model, alternative supporting notations have recently emerged to capture the power intent. In the 2016 study, we wanted to get a sense of where the industry stands in adopting these various notations and what we found was essentially no change from our 2014 study. For projects that actively manage power, Figure 3 shows the various standards used to describe power intent that have been adopted. Some projects are actively using multiple standards (such as different versions of UPF or a combination of CPF and UPF). That’s why the adoption results do not sum to 100 percent.

BLOG-2016-WRG-figure-11-3

Figure 3. Notation used to describe power intent

In an earlier blog in this series, I provided data that suggest a significant amount of effort is being applied to ASIC/IC functional verification. An important question the various studies have tried to answer is whether this increasing effort is paying off. In my next blog (click here), I present verification results findings in terms of schedules, number of required spins, and classification of functional bugs.

Quick links to the 2016 Wilson Research Group Study results

, , , , , ,

31 October, 2016

ASIC/IC Language and Library Adoption Trends

This blog is a continuation of a series of blogs related to the 2016 Wilson Research Group Functional Verification Study (click here).  In my previous blog (click here), I focused on I various verification technology adoption trends. In this blog I plan to discuss various ASIC/IC language and library adoption trends..

Figure 1 shows the adoption trends for languages used to create RTL designs. Essentially, the adoption rates for all languages used to create RTL designs is projected to be either declining or flat over the next year.

BLOG-2016-WRG-figure-10-1

Figure 1. ASIC/IC Languages Used for RTL Design

As previously noted, the reason some of the results sum to more than 100 percent is that some projects are using multiple languages; thus, individual projects can have multiple answers.

Figure 2 shows the adoption trends for languages used to create ASIC/IC testbenches. Essentially, the adoption rates for all languages used to create testbenches are either declining or flat. Furthermore, the data suggest that SystemVerilog adoption is starting to saturate or level off in the mid-70s range.

BLOG-2016-WRG-figure-10-2

Figure 2. ASIC/IC Languages Used for  Verification (Testbenches)

Figure 3 shows the adoption trends for various ASIC/IC testbench methodologies built using class libraries.

BLOG-2016-WRG-figure-10-3

Figure 3. ASIC/IC Methodologies and Testbench Base-Class Libraries

Here we see a decline in adoption of all methodologies and class libraries with the exception of Accellera’s UVM, whose adoption continued to increase between 2014 and 2016. Furthermore, our study revealed that UVM is projected to continue its growth over the next year. However, like SystemVerlog, it will likely start to level off in the mid- to upper-70 percent range.

Figure 4 shows the ASIC/IC industry adoption trends for various assertion languages, and again, SystemVerilog Assertions seems to have saturated or leveled off.

BLOG-2016-WRG-figure-10-4

Figure 4. ASIC/IC Assertion Language Adoption

In my next blog (click here) I plan to present the ASIC/IC design and verification power trends.

Quick links to the 2016 Wilson Research Group Study results

, , , , , , , , , , , , , , , , , , ,

24 May, 2016

Join us at the 53rd Design Automation Conference

DAC is always a time of jam-packed activity with multiple events that merit your time and attention.  As you prepare your own personal calendars and try your best to reduce or eliminate conflicts, let me share with you some candidate events that you may wish to consider having on your calendar.  I will highlight opportunities to learn more about ongoing and emerging standards from Accellera and IEEE.  I will focus on a few sessions at the Verification Academy booth (#627) that feature Partner presentations.  And I will spotlight some venues where other industry collaboration will be detailed.  You will also find me at many of these events as well.

Standards

Accellera will host its traditional Tuesday morning breakfast.  Registration is required – or you might not find a seat.  As always, breakfast is free.  The morning will feature a “Town Hall” style meeting that will cover UVM (also known as IEEE P1800.2) and other technical challenges that could help evolve UVM into other areas.   Find out more and learn about all things UVM, register here.

Partners

The Verification Academy is “partner-central” for us this year.  Each day will feature partner presentations that highlight evolving design and verification methodologies, standards support and evolution, and product integrations.  Verification Academy is booth #627, which is centrally located and easy to find.  Partner presentations include:

  • Back to the Stone Ages for Advanced Verification
    Monday June 6th
    2:00 PM | Neil Johnson – XtremeEDA

    Modern development approaches are leaving quality gaps that advanced verification techniques fail to address… and the gaps are growing in spite of new innovation. It’s time for a fun, frank and highly interactive discussion around the shortcomings of today’s advanced verification methods.

  • SystemVerilog Assertions – Bind files & Best Known Practices
    Monday June 6th
    3:00 PM | Cliff Cummings – Sunburst Design

    SystemVerilog Assertions (SVA) can be added directly to the RTL code or be added indirectly through bindfiles. 13 years of professional SVA usage strongly suggests that Best Known Practices use bindfiles to add assertions to RTL code.

  • Specification to Realization flow using ISequenceSpec™ and Questa® InFact
    Tuesday June 7th
    10:00 AM | Anupam Bakshi – Agnisys, Inc.

    Using an Ethernet Controller design, we show how complete verification can be done in an automated manner, saving time while improving quality. Integration of two tools will be shown. InFact creates tests for a variety of scenarios which is more efficient and exhaustive than a pure constrained random methodology. ISequenceSpec forms a layer of abstraction around the IP/SoC from a specification.

  • Safety Critical Verification
    Wednesday June 8th
    10:00 AM | Mike Bartley – TVS

    The traditional environments for safety-related hardware and software such as avionics, rail and nuclear have been joined by others (such as automotive and medical devices) as systems become increasingly complex and ever more reliant on embedded software. In tandem, further industry-specific safety standards (including ISO 26262 for automotive applications and IEC 62304 for medical device software) have been introduced to ensure that hardware and software in these application areas has been developed and tested to achieve a defined level of integrity. In this presentation, we will be explaining some of these changes and how they can be implemented.

  • Using a Chessboard Challenge to Discover Real-world Formal Techniques
    Wednesday June 8th
    3:00 PM | Vigyan Singhal & Prashant Aggarwal – Oski Technology

    In December 2015, Oski challenged formal users to solve a chessboard problem. This was an opportunity to show how nifty formal techniques might be used to solve a fun puzzle. Design verification engineers from a variety of semiconductor companies and research labs participated in the contest. The techniques submitted by participants presented a number of worthy solutions, with varying degrees of success.

Industry Collaboration

Debug Data API: “Cadence and Mentor Demonstrate Collaboration for open Debug Data API in Action”  It was just a year ago that the project to create an open debug data API was announced at DAC 52.  Since there several possible implementation styles were reviewed, an agreed specification created and early working prototypes demonstrated.  On Tuesday, June 7th at 2:00pm we will host a session at the Verification Academy (Booth #627).  You are encouraged to register for the free session – but walkups are always welcome!  You can find more information here.

Portable Stimulus Tutorial: “How Portable Stimulus Addresses Key Verification, Test Reuse, and Portability Challenges”  As part of the official DAC program, there will be a tutorial on the emerging standardization work in Accellera.  The tutorial is Monday, June 6th from 1:30pm – 3:00pm in the Austin Convention Center, Room 15.  You can register here for the tutorial.  There is a fee for this event.  Want to know more about the tutorial?  You can find more information here.

Fun

It is always good to end the day on a light note.  To that end, on Monday June 6th, will invite you to “grab a cold one” at the Verification Academy booth and continue discussions and networking with your colleagues.  If past year’s experience is any guide to this year, you may want to get here early for your drink!  There is no registration to guarantee a drink, unfortunately!  So, come early; stay late!  See you in Austin!

And if you miss me at any of the locations above, tweet me @dennisbrophy – your message is sure to reach me right away.

, , , , , , , , , , , , , , , , ,

10 August, 2015

ASIC/IC Power Trends

This blog is a continuation of a series of blogs related to the 2014 Wilson Research Group Functional Verification Study (click here).  In my previous blog (click here), I presented our study findings on various verification language and library adoption trends. In this blog, I focus on power trends.

Today, we see that about 73 percent of design projects actively manage power with a wide variety of techniques, ranging from simple clock-gating, to complex hypervisor/OS-controlled power management schemes. What is interesting from our 2014 study is that the data indicates that there has been a 19% increase in the last two years in the designs that actively manage power (see Figure 1).

2014-WRG-BLOG-ASIC-11-1

Figure 1. ASIC/IC projects working on designs that actively manage power

Figure 2 shows the various aspects of power-management that design projects must verify (for those 73 percent of design projects that actively manage power). The data from our study suggest that many projects are moving to more complex power-management schemes that involve software control. This adds a new layer of complexity to a project’s verification challenge, since these more complex power management schedules often require emulation to fully verify.

2014-WRG-BLOG-ASIC-11-2

Figure 2. Aspects of power-managed design that are verified

Since the power intent cannot be directly described in an RTL model, alternative supporting notations have recently emerged to capture the power intent. In the 2014 study, we wanted to get a sense of where the industry stands in adopting these various notations. For projects that actively manage power, Figure 3 shows the various standards used to describe power intent that have been adopted. Some projects are actively using multiple standards (such as different versions of UPF or a combination of CPF and UPF). That’s why the adoption results do not sum to 100 percent.

2014-WRG-BLOG-ASIC-11-3

Figure 3. Notation used to describe power intent

In an earlier blog in this series, I provided data that suggest a significant amount of effort is being applied to ASIC/IC functional verification. An important question the various studies have tried to answer is whether this increasing effort is paying off. In my next blog (click here), I present verification results findings in terms of schedules, number of required spins, and classification of functional bugs.

Quick links to the 2014 Wilson Research Group Study results

, , , , , ,

30 July, 2015

Accellera Handoffs UVM to IEEE

It has been a long path from Mentor’s AVM to IEEE P1800.2.  But the moment has arrived: Accellera has formally announced UVM 1.2 will be submitted as a contribution to the IEEE P1800.2™ working group.

Verification Methodology Beginnings

As the IEEE finalized approval of the initial release of SystemVerilog (IEEE Std. 1800™) in 2005, I floated the idea of the need for a methodology that would be a companion to it.  At the time there was little to no industry desire to explore this opportunity in earnest – apart from interest by Mentor Graphics – so we launched our Advanced Verification Methodology (AVM) and set a new direction for an open functional verification methodology.  We built implementations of AVM based on SystemVerilog and SystemC (IEEE Std. 1666™).  We also pioneered an open-source mechanism based on the Apache 2.0 license which is now the accepted license to foster global and rapid open-source adoption in the EDA industry.  And as others joined with us in this journey, AVM grew to become OVM, then UVM.  Now UVM is set to become an IEEE standard.  The IEEE has assigned it project number 1800.2.

imagePath to IEEE

To say we are pleased to see UVM move to the IEEE is an understatement.  We congratulate the Accellera UVM team on its accomplishment and look forward to participate in this phase of UVM’s standardization. Since our first public announcement on May 8, 2006 when we introduced the world to AVM and announced support for it from 19 of our Questa Vanguard Partners, to our announced collaboration with Cadence Design Systems on the development of the Open Verification Methodology (OVM) on August 16, 2007 and the eventual announcement January 8, 2010 that Accellera adopts OVM as the basis of its Universal Verification Methodology, we have guided its development and supported a path for the Big-3 EDA to voice positive public support.  We are thrilled Accellera has announced its delivery of UVM to the IEEE for ongoing standardization and maintenance.

IEEE Standardization

What comes next?  The IEEE P1800.2 (UVM) project has announced a Call for Participation and kickoff meeting to be held August 6, 2015 from 9am – 11am PDT.  The first meeting will be held via teleconference.  In order to attend, you will need to register for the meeting.  Membership in the IEEE project will be “entity-based” with one company, one vote.  The call for participation has details on membership requirements in order to observe or actively participate.  The 1800.2 project will only focus on the written specification and not the open-source base class library (BCL).  The Accellera UVM TSC will continue to update the BCL.  Accellera has committed to keep the BCL implementation current with changes proposed and approved by the IEEE 1800.2 working group.  This is just like the arrangement Accellera has with the IEEE for SystemC.

Join us at the upcoming meeting and remember to register in order to attend!

 

, , , , , , , , , ,

27 July, 2015

ASIC/IC Language and Library Adoption Trends

This blog is a continuation of a series of blogs related to the 2014 Wilson Research Group Functional Verification Study (click here).  In my previous blog (click here), I presented our study findings on various verification technology adoption trends. In this blog, I focus on language and library adoption trends.

As previously noted, the reason some of the results sum to more than 100 percent is that some projects are using multiple languages; thus, individual projects can have multiple answers.

Figure 1 shows the adoption trends for languages used to create RTL designs. Essentially, the adoption rates for all languages used to create RTL designs is projected to be either declining or flat over the next year, with the exception of SystemVerilog.

2014-WRG-BLOG-ASIC-10-1

Figure 1. ASIC/IC Languages Used for RTL Design

Figure 2 shows the adoption trends for languages used to create ASIC/IC testbenches. Essentially, the adoption rates for all languages used to create testbenches are either declining or flat, with the exception of SystemVerilog. Nonetheless, the data suggest that SystemVerilog adoption is starting to saturate or level off at about 75 percent.

2014-WRG-BLOG-ASIC-10-2

Figure 2. ASIC/IC Languages Used for  Verification (Testbenches)

Figure 3 shows the adoption trends for various ASIC/IC testbench methodologies built using class libraries.

2014-WRG-BLOG-ASIC-10-3

Figure 3. ASIC/IC Methodologies and Testbench Base-Class Libraries

Here we see a decline in adoption of all methodologies and class libraries with the exception of Accellera’s UVM3, whose adoption increased by 56 percent between 2012 and 2014. Furthermore, our study revealed that UVM is projected to grow an additional 13 percent within the next year.

Figure 4 shows the ASIC/IC industry adoption trends for various assertion languages, and again, SystemVerilog Assertions seems to have saturated or leveled off.

2014-WRG-BLOG-ASIC-10-4

Figure 4. ASIC/IC Assertion Language Adoption

In my next blog (click here) I plan to present the ASIC/IC design and verification power trends.

Quick links to the 2014 Wilson Research Group Study results

, , , , , , , , , , , , , , , ,

7 May, 2015

For all things verification, you will want to stop by the Verification Academy booth #2408 at DAC to interact with experts exploring the challenges of IC design and verification.  At the top of each hour, the Verification Academy will feature a presentation followed by a lively conversation.  Presentations will not be repeated so each hour will be unique.

We have themed each of the days as well:

  • Monday is “Debug Day
  • Tuesday is “Standards & FPGA Day
  • Wednesday is “Formal Verification Day

Naturally, you will find a few exceptions to those rules when you look at the program in detail.  Please register for Verification Academy sessions here: Monday Registration | Tuesday Registration | Wednesday Registration.  [NOTE: the Verification Academy sessions are highlighted with a blue background when you visit the registration site.]  A concise listing of all the Verification Academy sessions can be found here.

We will feature an end of the day reception on Monday at the Verification Academy booth after the last presentation.  Neil Johnson (XtremeEDA) and Mentor’s Harry Foster will explore Agile Evolution in SoC Verification in that last session.  The session begins at 5pm.  Neil is a proponent of this methodology as a means to to help build in design quality and simplify the task of verification.  In addition to being an advocate for this, he is also a practitioner of it.  He is an open-source hardware developer and Moderator at www.AgileSoC.com.  We think the conversation that follows this informative session will be a lively one in which we invite everyone to continue over cocktails and hor d’oeuvres at 5:30pm.

We are sponsoring other events outside of the Verification Academy as well.  Tuesday is truly “Standards Day” at DAC.  In addition to the standards theme at the Verification Academy booth, you can kick off the day at the Accellera Breakfast and later in the day attend the IEEE DASC, Accellera and Si2 System Level Low Power Workshop.  Here is a partial list of Standards Day activities:

Registration

If you have not yet registered for DAC, do so now.  If you do not have plans to register for the full technical conference, many conference events are fee free if you select the “I LOVE DAC” registration option before May 19th!  In fact, all the “Standards Day” events listed above are free with early I Love DAC registration. Simply click here and you will be taken to the “I Love DAC” location to register.  Register before May 19th as after that date a $95 minimum fee sets in.

See you at DAC!

, , , , , , , , , ,

3 April, 2015

It is always good to pause to recognize the companies and individuals with whom we collaborate to create the verification flows and solutions that allow the simplest and most complex devices and systems to come to life.  It is this time of year when the fruit of collaboration has generally been shared publicly.  This is probably the case, in no small part, to the nearing of the annual trek to the Design Automation Conference (DAC).  As we get closer to that week in June this year, I will discuss it even more.  But now I would like to offer a look back at two major milestones around this time of the year that shaped our future.

20 Years Ago

On April 3, 1995, we announced “Device Vendors Providing Library Support to Mentor.”  Our ModelSim simulator gained support from 12 ASIC and programmable logic vendors.  Until then, Mentor’s gate-level simulation was provided by QuickSim and its large collection of ASIC vendor libraries and flows.  With the emergence of VITAL (VHDL Initiative Towards ASIC Libraries) and as an IEEE standards project for it (1976.4) emerged, we continued our activities to drive knowledge about VITAL and educate and help the rest of the ASIC vendor community so they could bring to market their own simulation libraries for ModelSim.

As we added Verilog to the language mix, those Verilog libraries were likewise qualified and offered to the mutual customers we shared with our valued ASIC Vendor partners.  ModelSim grew to be a very popular product and the value of collaboration taught us the importance of shared collaboration.

10 Years Ago

In mid May 2005, we launched our Questa Vanguard Partnership (QVP) program modeled on the ModelSim program.  SystemVerilog 3.1a had been released by Accellera and was in the final stages of IEEE certification which was to come in November 2005.  But to get a jump on solidifying business relationships with our partners and to encourage support of SystemVerilog we began to work with companies around the world who expressed an interest to build a vibrant ecosystem.  A lot was accomplished in the six months between the launch of the QVP program to the approval of the first IEEE SystemVerliog 1800-2005 standard.

But it was good to pause then too and celebrate the standard with our new Questa partners, our mainstay semiconductor library partners and competitors in Japan.  Upon IEEE approval of the standard, Accellera in conjunction with the Big-3 EDA companies and CQ Publishing (Japan), held a “Happy Birthday” celebration reception.  I have to offer special thanks to my friends at Synopsys for the idea.  And, yes, we all know that this November will be lucky 10 years for SystemVerilog and we have already started to discuss what can be done at the annual fall standards meetings in Japan to celebrate this milestone.

Tomorrow (DAC)

As I mentioned, the great thing about this time of the year is the planning for DAC.  Many good things have happened in the last year.  Last year, at Mentor Graphics’ urging and our public commitment to donate technology, Accellera started a “Proposed Working Group” on Portable Stimulus to determine the viability of a standards project.  Accellera formally approved the formation of the Portable Stimulus Working Group in December 2014.  At the Verification Academy booth at DAC, we will certainly offer updates on this work and affirm our sustained commitment to the development of this standard.  I will share full details about what, when and where for the Verification Academy booth at DAC later.

But wait!  There will probably be more.  I can assure you, I will post a few more times during this final two-month journey to DAC.  And as the daily program for the Verification Academy booth is finalized, I will share its content my thoughts on this.  And as industry events, like the Accellera DAC Breakfast are finalized, I will make this part of my commentary on DAC 2015 as well.  It seems this DAC will be a busy DAC.

But this is something you can do now!  If you don’t know if you want to attend the technical program yet, you should at a minimum secure a free pass to the exhibit floor and access to some open industry events.  If you register by May 19th, you can choose the “I Love DAC” registration – complements of ATopTech, Atrenta, and Calypto.  After May 19th, it is no longer free.  So why not register now?  I look forward to seeing you at DAC.

, , , , , , , , , , ,

@dennisbrophy tweets

Follow dennisbrophy

@dave_59 tweets

Follow dave_59

@jhupcey tweets

  • #ARM now hiring formal verification engineers in Austin: exciting tech challenge + Ram is a great guy to work with.…https://t.co/uwIXLHWqvg
  • Attention all SF Bay Area formal practitioners: next week Wednesday 7/26 on Mentor's Fremont campus the Verificatio…https://t.co/9Y0iFXJdYi
  • This is a very hands-on, creative role for a verification expert -- join us! https://t.co/jXWFGxGrpn

Follow jhupcey