Mind Your Head(room)

In “What’s black and stuck on a PCB?” I promised I’d get back to writing about FloTHERM.PACK and how it can really help your thermal modelling by helping you build accurate thermal models of chip packages.

Assuming you’ve been using FloTHERM or FloTHERM.PCB without FloTHERM.PACK I guess I first need convince you about why you should bother. To help me do that I’d like to introduce you to the concept of ‘thermal headroom’.

thermal-headroomAs you’ll see from the image, it also defines a division of responsibility between the component vendor and systems integrator, with the vendor being responsible for providing data to allow the temperature rise inside the package to be predicted for the specific application environment. It’s the systems integrators job to define the thermal environment for the package. So, the systems integrator should build a model of his or her system, and use a thermal model supplied by the vendor to represent the package. This is fair enough, and something the industry has broad agreement on.

The snag is that whereas some vendors not only provide models, they go the extra mile and attempt to demonstrate their parts will work in a customer’s product, many vendors don’t make thermal models routinely available to their customers. This was a problem for systems integrators when the DELPHI project finished over a decade ago, but it’s a bigger problem today.

The reason is that miniaturization has increased package-level heat fluxes, so that the temperature rise in the package is becoming an increasing contribution to the total temperature rise. Hence to be confident there’s enough thermal headroom to ensure the product meets vendor temperature specifications we need to know the temperature rise in the package quite accurately.

OK, so how far out can you be for the temperature rise in the package? Well, if you model the package as a simple conducting block it’s anybody’s guess. I reckon ± 50% is a pretty conservative estimate – it could be much higher. If you use a 2-Resistor model experience shows the error is normally down around ± 20%-30%, so it’s about twice as accurate, and does not have any more computational cost. If you use a DELPHI model, these are normally better than ±10%. Slightly more expensive than a 2-Resistor model, but definitely worth the expense for any thermally important packages.

When it comes to thermally critical packages, I’d recommend you use a detailed model. The reason is that the interaction of the package and its environment can be quite subtle. Many years ago I was looking into the thermal performance of one of the first Pentium CPGA packages in a wind tunnel, which had a heat sink attached. What I found was that heat passed from the package into the heat sink above the die, and then spread much more easily in the heat sink base than it did in the chip package. As a result, toward the edge of the package the heat sink was hotter than the package, so heat was passing back into the package, heating it back up! Reducing the contact area between the package and the heat sink by giving the heat sink base a central pedestal improved the thermal performance and made it possible to reduce the mass of the heat sink by making the base thinner. Cool!

Often heat transfer and fluid flow do things I don’t initially expect. If you have any similar stories I’d love to hear them.

Dr. J, Hampton Court

Post Author

Posted November 4th, 2009, by

Post Tags

, , , , , , ,

Post Comments


About John Parry’s Blog

A mixed bag of things that interest me professionally -CFD technology and its use in education, cooling technologies and the place of thermal design in the overall design flow. John Parry’s Blog


2 comments on this post | ↓ Add Your Own

[…] Before I go any further it would be remiss of me not to mention that our FloTHERM family of simulation tools can do all this numerically for you, specifically FloTHERM.PACK as John Parry has covered in his recent blog entry. […]

[…] Before I go any further it would be remiss of me not to mention that our FloTHERM family of simulation tools can do all this numerically for you, specifically FloTHERM.PACK as John Parry has covered in his recent blog entry. […]

Add Your Comment


May 2014
  • Ramping Up for THERMINIC! Abstract Deadline 28th May 2014
  • February 2014
  • FREE Exhibition at SEMI-THERM 30 Conference, San Jose March 9-13
  • August 2010
  • Lies, Damned Lies, and “CFD Comparison Charts” – Part IV
  • Lies, Damned Lies, and “CFD Comparison Charts” – Part III
  • Lies, Damned Lies, and “CFD Comparison Charts” – Part II
  • Lies, Damned Lies, and “CFD Comparison Charts” – Part I
  • July 2010
  • Mechanical Analysis Products Now in Mentor’s Higher Education Program
  • Sony Vaio laptop in mass ‘recall’
  • June 2010
  • Nearly Back to Business as Usual
  • April 2010
  • The Debate about Liquid Cooled Data Centers
  • MicReD Technology Wins Highest Technical Honor
  • March 2010
  • Sticking Plaster and Light beats Skin Cancer
  • IBM Work to take Moore’s Law to 2025
  • Concurrent CFD Explained (Part IV)
  • Roundup of SEMI-THERM, FloTHERM IC launch and JEDEC
  • February 2010
  • NEW ElectronicsCooling Magazine Website
  • Liquid Cooling – Are We There Yet?
  • Foresight and X-Ray Vision or Hindsight and Regret?
  • FREE Exhibition at SEMI-THERM, Santa Clara February 23-24
  • Force Prediction with Concurrent CFD
  • January 2010
  • Champcar Exhaust Analysis
  • Concurrent CFD Explained (Part III)
  • Stop Press: New Electronics Cooling Community
  • Interested in Indy Car?
  • Concurrent CFD Explained (Part II)
  • Concurrent CFD Explained (Part I)
  • December 2009
  • Cool Youtube Video
  • The Secret’s Out!
  • Wanna Know a Secret?
  • Thermal Design: Who’s Job Is It Anyway?
  • November 2009
  • More on Concurrent CFD in Product Design
  • Concurrent Design and Thoughts on ‘Flows’
  • Mind Your Head(room) Again
  • Solutions Expos – Going MAD in the UK
  • Mind Your Head(room)
  • October 2009
  • Solutions Expos – Just Back
  • Web slashes and missing polar ice
  • Going MAD at European Solutions Expos
  • What’s black and stuck on a PCB?
  • September 2009
  • Try the latest thing in CFD – Free!
  • How to survive a recession
  • ‘Simulating and Optimizing’ – A Series of Free Web Seminars
  • August 2009
  • Fluid Dynamics = Fun (Just back from holiday!)
  • Engineers Spend 60-80% of Work Time Changing Existing Designs
  • Hayfever: Stopped by a Red Light
  • Free Thermal Management Design Guide
  • July 2009
  • Where did CFD come from?
  • Formula 1 and KERS
  • A True Market Leader
  • Mind Your Thermal Management To Improve Reliability
  • Tennis – it’s a rough sport
  • Fluid Dynamics and BBQs
  • June 2009
  • Air – Is it Running Out of Gas?
  • The Deal with Electronics Cooling CFD – Meshing
  • The Deal with Electronics Cooling CFD: Geometry (Lots!)
  • May 2009
  • What’s the Deal with Electronics Cooling CFD?
  • The Start of A New Chapter