Posts Tagged ‘Verification Academy’

1 April, 2015

FPGA Effort Verification Trends (Continued)

This blog is a continuation of a series of blogs related to the 2014 Wilson Research Group Functional Verification Study (click here). In my previous blog (click here), I focused on the controversial topic of effort spent in FPGA verification. This blog continues that discussion. I stated in my previous blog that I don’t believe there is a simple answer to the question, “how much effort was spent on verification in your last FPGA project?” I believe that it is necessary to look at multiple data points to truly get a sense of the real effort involved in verification today. So, let’s look at a few additional findings from the study.

Time FPGA designers spend in verification

For projects that have a separation of teams (i.e., design engineers and verification engineers), it’s important to note that FPGA verification engineers are not the only project members involved in functional verification. FPGA design engineers spend a significant amount of their time in verification too, as shown in Figure 1.


Figure 1. Average (mean) time FPGA design engineers spend in design vs. verification.

You might note (on average) that FPGA design engineers actually spend slightly more time doing verification than design. We are not showing trends here since we have insufficient data related to the questions for FPGA designs from our previous study. We anticipate being able to show trends after our next study (currently scheduled for 2016).

Even if the FPGA project has a separation of teams, the designers are still involved in the verification process, ranging from:

  • Small sandbox testing to explore various aspects of the implementation
  • Full functional testing of IP blocks and SoC integration
  • Debugging verification problems identified by a separate verification team

In fact, getting a better understanding of exactly where FPGA designers spend their time has led us to conduct a series of follow-on discussions with various FPGA projects from various market segments. Through this process we have learned a concern by many project managers related to the increase amount of debugging time spent on a project (both pre-lab and lab debugging time). This is one area of FPGA verification that we plan to continue to explore through a series of in-depth discussions with multiple FPGA projects around the world.

Percentage of time FPGA verification engineers spends in various task

Next, let’s look at the mean time FPGA verification engineers spend in performing various tasks related to their specific project. You might note that verification engineers spend most of their time in debugging. Ideally, if all the tasks were optimized, then you would expect this. Yet, unfortunately, the time spent in debugging can vary significantly from project-to-project, which presents scheduling challenges for managers during a project’s verification planning process.


Figure 2. Average (mean) time verification engineers spend in various task

In our 2012 study we found that FPGA verification engineers spent about 37% of their time involved in debugging task. There was a 16 percent increase in the amount of time spent in debugging between 2012 and 2014. Hence, the data suggest that debugging effort is increasing for both FPGA engineers.

In my next blog (click here) I present our study findings in terms of FPGA schedules, iterations in the lab, and classification of functional bugs.

Quick links to the 2014 Wilson Research Group Study results

, , ,

17 March, 2015


With a name like “Fitzpatrick,” you knew I’d be celebrating today, right?

Well, there’s no better way to celebrate this fine day than to announce that our latest edition of Verification Horizons is available online! Now that Spring is almost here, there’s a bit less snow on the ground than there was when I wrote my introduction, but everything is still covered. I’m considering spray-painting it all green in honor of the occasion, so at least it looks like I have a lawn again.

In this issue of Verification Horizons, I’d particularly like to draw your attention to “Successive Refinement: A Methodology for Incremental Specification of Power Intent,” by my friend and colleague Erich Marschner and several of our friends at ARM® Ltd. In this article, you’ll find out how the Unified Power Format (UPF) specification can be used to specify and verify your power architecture abstractly, and then add implementation information later in the process. This methodology is still relatively new in the industry, so if you’re thinking about making your next design PowerAware, you’ll want to read this article to be up on the very latest approach.

In addition to that, we’ve also got Harry Foster discussing some of the results from his latest industry study in “Does Design Size Influence First Silicon Success?” Harry is also blogging about his survey results on Verification Horizons here and here (with more to come).

Our friends at L&T Technology Services Ltd. share some of their experience in doing PowerAware design in “PowerAware RTL Verification of USB 3.0 IPs,” in which you’ll see how UPF can let you explore two different power management architectures for the same RTL.

Next, History class is in session, with Dr. Lauro Rizzatti, long-time EDA guru, giving us part 1 of a 3-part lesson in “Hardware Emulation: Three Decades of Evolution.”

Our friends at Oracle® are up next with “Evolving the Use of Formal Model Checking in SoC Design Verification,” in which they share a case study of their use of formal methods as the central piece in verifying an SoC design they recently completed with first-pass silicon success. By the way, I’d also like to take this opportunity to congratulate the author of this article, Ram Narayan, for his Best Paper award at DVCon(US) 2015. Well done, Ram!

We round out the issue with our famous “Partners’ Corner” section, which includes two articles. In “Small, Maintainable Tests,” our friends at Sondrel IC Design Services show you a few tricks on how to make use of UVM virtual sequences to raise the level of abstraction of your tests. In “Functional Coverage Development Tips: Do’s and Don’ts,” our friends at eInfochips give you a great overview of functional coverage, especially the covergroup and related features in SystemVerilog.

I’d also like to take a moment to thank all of you who came by our Verification Academy booth at DVCon to say hi. I found it incredibly humbling and gratifying to hear from so many of you who have learned new verification skills from the Verification Academy. That’s a big part of why we do what we do, and I appreciate you letting us know about it.

Now, it’s time to celebrate St. Patrick’s Day for real!

, , , , , , ,

11 March, 2015

FPGA Verification Effort Trends

This blog is a continuation of a series of blogs related to the 2014 Wilson Research Group Functional Verification Study (click here).  In my previous blog (click here), I focused on FPGA design trends. In this blog, I present findings from our study related to the effort spent in verification.

Directly asking study participants how much effort they spend in verification will not work. The reason is that it’s hard to find a paper or article on verification that doesn’t start with the phrase: “Seventy percent of a project’s effort is spent in verification…” In other words, the industry is already biased to respond with this effort value. Yet, there are really no creditable references to quantify this value.

I don’t believe that there is a simple answer to the question, “How much effort was spent on verification in your last project?” In fact, I believe that it is necessary to look at multiple data points derived from multiple questions to truly get a sense of effort spent in verification. And that’s what we did in our functional verification study.

Total FPGA Project Time Spent in Verification

To try to assess the effort spent in verification, let’s begin by looking at one data point, which is the total project time spent in verification. Figure 1 shows the trends in total percentage of FPGA project time spent in verification by comparing the 2012 Wilson Research Group study (in dark blue), and the 2014 Wilson Research Group study (in light blue).

Figure 1. Percentage of FPGA project time spent in verification

Between the years 2012 and 2014 the industry did see a seven percent increase in the average time an FPGA project spends in verification. Historically, FPGA projects have spent less time in verification than ASIC/IC projects. The FPGA project strategy has traditionally been to get to the lab as soon as possible, and then iterate on issues in the lab. In a future blog I’ll show data that indicates this strategy does not necessarily yield good results in terms of meeting project schedule or quality objectives. Also, this lab-focused approach to FPGA verification becomes less effective as FPGA complexity increases.

Peak Number of Design and Verification Engineers

Perhaps one of the biggest challenges in design and verification today is identifying solutions to increase productivity and control engineering headcount. To illustrate the need for productivity improvement, we discuss the trend in terms of increasing engineering headcount for FPGA projects. Figure 2 shows the mean peak number of design and verification engineers working on an FPGA project. Again, this is an industry average since some projects have many engineers while other projects have few.

Figure 2. Mean peak number of engineers working on an FPGA project

You can see that the compounded annual growth rate (CAGR) for the peak number of FPGA design engineers between 2012 and 2014 was 4.9 percent, while the CAGR for the peak number of FPGA verification engineers was 20.9 percent. This huge demand for verification engineers on FPGA projects is one indicator of growing verification complexity in FPGA designs. Also, note that the ratio of design engineers versus verification engineers is approaching 1-to-1. This similar trend happened on traditional ASIC/IC designs in 2012.

In my next blog (click here) I focus on the time that FPGA design and verification engineers spends in various task.

Quick links to the 2014 Wilson Research Group Study results

, ,

23 February, 2015

It’s my favorite time of year again—DVCon!  And I believe that the DVCon 2015 technical program committee has put together one of the technically best DVCon’s in years. In this blog I plan on highlighting a few DVCon events that you might want to put on your calendar.


First, at this year’s conference the Verification Academy has a dedicated booth (#301), and I hope you stop by to say hello to myself, my friend Tom Fitzpatrick, and an amazing lineup of other Verification Academy subject matter experts.

Next, on Wednesday morning March 4 I have the honor of participating on a verification panel, titled: “Art of Science.” Here, my fellow panelist and I will debate the issue that verification today is considered by some to be more of an art than a science—and one which is perceived as difficult to master. To learn my position on this topic, you’ll have to stop by!

Also on Wednesday at the Mentor sponsored lunch, my colleague Steve Bailey and I have put together both an informative and entertaining talk we’ve title: “From Tightly Coupled (Loosely Bolted) to Verification Convergence.” Here, we discuss the state of verification past, present and future while examining the results from our recently industry world-wide study, which I started blogging about a few weeks ago (click here for more details). Our talk will examine how advanced techniques are taking hold in mainstream design and provide insights on the recent convergence of verification solutions to meet today’s growing challenges.

Finally, there are two tutorials I’d like to encourage you to attend while at DVCon this year:

  1. Advanced, High-Throughput Debug from Architectural Modeling Through Post-Silicon SoC Validation (click here for more details)
  2. Dead or Alive: Using Automated Formal Techniques to Characterize Dead Code, Reveal Paths to Hit Uncovered States, and Reach Coverage Closure Faster (click here for more details)

I look forward to meeting you at DVCon 2015!

, , ,

11 February, 2015

Accellera Approves Creation of Portable Stimulus Working Group

At DVCon 2014, Mentor Graphics proposed Accellera launch an exploratory exercise, called a Proposed Working Group (PWG), to determine if there was sufficient interest and need to create a standard in this area.  To help motivate the consideration of this activity, we indicated we would offer our graph-based test specification embodied in our inFact verification tool.

Rapid adoption of our technology has been the trend, especially when used in conjunction within a SystemVerilog UVM testbench environment.  One of the major benefits of UVM has been the portable nature of the testbench to facilitate design verification within and across companies.  The exclusive nature of our graph-based test specification language limits its easy use within the industry leading users to suggest we look to standardize it in keeping with the fundamental UVM principle of testbench portability.

After about a year of discussion in Accellera, the group announced it had concluded there should be an official standards project in this area.  Industry participants have likewise offered quotes of support for the formation of the Accellera Portable Stimulus Working Group.

The challenges to efficient and effective verification continue to grow.  If we stop where we are today in verification algorithm advances and standards the trend to require more people, time or compute resources will continue grow unabated at exponential rates.

For Mentor Graphics part, the verification team here has gone to market with innovative technology that has shown remarkable ability to improve verification productivity and efficiency.  The specification we offer to Accellera to seed this project is the same embodied in technology we used when we partnered with TSMC to validate advanced functional verification technology we announced in 2011.  From that announcement, we shared that tests conducted by AppliedMicro in designs destined for TSMC shortened “time-to-coverage by over 100x.”

One need not wonder if it is possible to shrink a month’s worth of verification tests into less than an 8 hour work day.  It is.  To find out how our specific use of this technology works and what motivates us to support standardization of Portable Stimulus in Accellera, I invite you to visit the Verification Academy where a session on Intelligent Testbench Automation shows what can be done.

And for those who would like to help in the development of the standard and may have technology to further underpin it, you should consider attending the first organizational meeting of the Portable Stimulus Working Group at DVCon 2015 March 5th from 6pm-9pm.  Contact Accellera for member-only meeting details or catch me at DVCon 2015 and I can share more information with you.

, , , , , , ,

8 February, 2015

FPGA Design Trends

In my previous blog, I introduced the 2014 Wilson Research Group Functional Verification Study (click here). The objective of my previous blog was to provide an overview on our large, worldwide industry study. The key findings from this study will be presented in a set of upcoming blogs. In this blog, I present trends related to various aspects of FPGA design to illustrate growing design complexity.

Let’s begin by examining embedded processor trends targeted at a general FPGA implementation. Our 2014 study found that 56% of all FPGA designs contained one or more embedded processors, as shown in Figure 1. Although we did not see an overall growth in the number of FPGAs containing one or more embedded processors between 2012 and 2014, we did see an increase in the number of FPGA projects creating designs containing more than one embedded processor.


Figure 1. Number of embedded processors in FPGA trends

SoC class designs (i.e., designs containing embedded processors) add a new layer of verification complexity to the verification process that did not exist with traditional non-SoC class designs due to hardware and software interactions, new coherency architectures, and the emergence of complex network-on-a-chip interconnect.

In addition to embedded processors targeted at general FPGA class of designs, there has been a recent emergence of specific programmable SoC FPGA implementations, such as: Xilinx’s Zynq, Altera’s Arria/Cydone, and Microsemi’s SmarFusion. Figure 2 shows the adoption trends for these programmable SoC FPGAs, which you can see grew by over 93 percent between 2012 and 2014. Keep in mind that this trend data does not represent volume production—it represents the number of FPGA projects that are creating designs targeted at a programmable SoC class of FPGA.


Figure 2. Type of FPGA implementation trends

As the industry moves to SoC class designs, regardless of targeted FPGA implementation, FPGA projects are starting to increase their adoption of industry standard on-chip bus protocols—versus proprietary bus protocols. Figure 3 shows the current adoption of AMBA and other on-chip bus protocols for FPGA designs as identified by our new study. Note, the reason we are not showing trends here is that the 2012 study did not separate out the various AMBA protocols, which is something we decided to do for our 2014 study. Hence, we cannot do an apples-to-apples comparison between 2012 and 2014 for FPGA on-chip bus protocol adoption.


Figure 3. FPGA on-chip bus protocol adoption

Another aspect of SoC class design is the emergence of IP-based design practices, which is fundamental for improving design productivity. Figure 4 shows FPGA design composition trends—and we see that there has been a declined in new logic created by FPGA project teams. At the same time we see an increase in the adoption of both internally developed and externally acquired IP.


Figure 4. FPGA design composition trends

In my next blog (click here), I’ll focus on verification effort trends related to FPGA designs.

Quick links to the 2014 Wilson Research Group Study results


21 January, 2015

This blog is a continuation of a series of blogs that present the highlights from the 2014 Wilson Research Group Functional Verification Study (for a background on the study, click here).

In this blog I discuss the issue of study bias, and what we did to address these concerns.


When architecting a study, three main concerns must be addressed to ensure valid results: sample validity bias, non-response bias, and stakeholder bias. Each of these concerns is discussed in the following sections, as well as the steps we took to minimize these bias concerns.

Sample Validity Bias

To ensure that a study is unbiased, it’s critical that every member of a studied population have an equal chance of participating. An example of a biased study would be when a technical conference surveys its participants. The data might raise some interesting questions, but unfortunately, it does not represent members of the population that were unable to participant in the conference. The same bias can occur if a journal or online publication limits its surveys to only its subscribers.

A classic example of sample validity bias is the famous Literary Digest poll in the 1936 United States presidential election, where the magazine surveyed over two million people. This was a huge study for this period in time. The sampling frame of the study was chosen from the magazine’s subscriber list, phone books, and car registrations. However, the problem with this approach was that the study did not represent the actual voter population since it was a luxury to have a subscription to a magazine, or a phone, or a car during The Great Depression. As a result of this biased sample, the poll inaccurately predicted that Republican Alf Landon versus the Democrat Franklin Roosevelt would win the 1936 presidential election.

For our study, we carefully chose a broad set of independent lists that, when combined, represented all regions of the world and all electronic design market segments. We reviewed the participant results in terms of market segments to ensure no segment or region representation was inadvertently excluded or under-represented.

Non-Response Bias

Non-response bias in a study occurs when a randomly sampled individual cannot be contacted or refuses to participate in a survey. For example, spam and unsolicited mail filters remove an individual from the possibility of receiving an invitation to participate in a study, which can bias results. It is important to validate sufficient responses occurred across all lists that make up the sample frame. Hence, we reviewed the final results to ensure that no single list of respondents that made up the sample frame dominated the final results.

Another potential non-response bias is due to lack of language translation, which we learned during our 2012 study. The 2012 study generally had good representation from all regions of the world, with the exception of an initially very poor level of participation from Japan. To solve this problem, we took two actions:

  1. We translated both the invitation and the survey into Japanese.
  2. We acquired additional engineering lists directly from Japan to augment our existing survey invitation list.

This resulted in a balanced representation from Japan. Based on that experience, we took the same approach to solve the language problem for the 2014 study.

Stakeholder Bias

Stakeholder bias occurs when someone who has a vested interest in survey results can complete an online study survey multiple times and urge others to complete the survey in order to influence the results. To address this problem, a special code was generated for each study participation invitation that was sent out. The code could only be used once to fill out the survey questions, preventing someone from taking the study multiple times or sharing the invitation with someone else.

2010 Study Bias

While architecting the 2012 study, we did discover a non-response bias associated with the 2010 study. Although multiple lists across multiple market segments and across multiple regions of the world were used during the 2010 study, we discovered that a single list dominated the responses, which consisted of participants who worked on more advanced projects and whose functional verification processes tend to be mature. Hence, for this series of blogs we have decided not to publish any of the 2010 results as part of verification technology adoption trend analysis.

The 2007, 2012, and 2014 studies were well balance and did not exhibit the non-response bias previously described for the 2010 data. Hence, we have confidence in talking about general industry trends presented in this series of blogs.

Quick links to the 2014 Wilson Research Group Study results


21 January, 2015

This is the first in a series of blogs that presents the findings from our new 2014 Wilson Research Group Functional Verification Study. However, unlike my previous Wilson Research Group functional verification study blogs, which focused on the ASIC/IC market, I plan to begin this set of blogs with an exclusive focus on FPGA trends. Why? For the following reasons:

  1. Unlike the traditional ASIC/IC market, there has historically been very few studies published on FPGA functional verification trends. We started studying the FPGA market segment back in the 2010 study, and we now have collected sufficient data to confidently present industry trends related to this market segment.
  2. Today’s FPGA designs have grown in complexity—and many now resemble complete systems. The task of verifying SoC-class designs is daunting, which has forced many FPGA projects to mature their verification process due to rising complexity. The FPGA-focused data I present in this set of blogs will support this claim.

My plan is to release the ASIC/IC functional verification trends through a set of blogs after I finish presenting the FPGA trends.


In 2002 and 2004, Collett International Research, Inc. conducted its well-known ASIC/IC functional verification studies, which provided invaluable insight into the state of the electronic industry and its trends in design and verification at that point in time. However, after the 2004 study, no additional Collett studies were conducted, which left a void in identifying industry trends. To address this dearth of knowledge, four studies were commissioned by Mentor Graphics in 2007, 2010, 2012, and 2014, which focused on functional verification. These were world-wide, double-blind, functional verification studies, covering all electronic industry market segments. To our knowledge, the 2014 study was the largest functional verification study ever conducted. This set of blogs presents the findings from our 2014 study and provides invaluable insight into the state of the electronic industry today in terms of both design and verification trends.

Study Background

Our study was modeled after the original 2002 and 2004 Collett International Research, Inc. studies. In other words, we endeavored to preserve the original wording of the Collett questions whenever possible to facilitate trend analysis. To ensure anonymity, we commissioned Wilson Research Group to execute our study. The purpose of preserving anonymity was to prevent biasing the participants’ responses. Furthermore, to ensure that our study would be executed as a double-blind study, the compilation and analysis of the results did not take into account the identity of the participants.

For the purpose of our study we used a multiple sampling frame approach that was constructed from eight independent lists that we acquired. This enabled us to cover all regions of the world—as well as cover all relevant electronic industry market segments. It is important to note that we decided not to include our own account team’s customer list in the sampling frame. This was done in a deliberate attempt to prevent biasing the final results. My next blog in this series will discuss other potential bias concerns when conducting a large industry study and describe what we did to address these concerns.

After data cleaning the results to remove inconsistent or random responses (e.g., someone who only answered “a” on all questions), the final sample size consisted of 1886 eligible participants (i.e., n=1886). To put this figure in perspective, the 2004 Collett study sample size consisted of 201 eligible participants.

Unlike the 2002 and 2004 Collett IC/ASIC functional verification studies, which focused only on the ASIC/IC market segment, our studies were expanded in 2010 to include the FPGA market segment. We have partitioned the analysis of these two different market segments separately, to provide a clear focus on each. One other difference between our studies and the Collett studies is that our study covered all regions of the world, while the original Collett studies were conducted only in North America (US and Canada). We have the ability to compile the results both globally and regionally, but for the purpose of this set of blogs I am presenting only the globally compiled results.

Confidence Interval

All surveys are subject to sampling errors. To quantify this error in probabilistic terms, we calculate a confidence interval. For example, we determined the overall margin of error for our study to be ±2.19% at a 95% confidence interval. In other words, this confidence interval tells us that if we were to take repeated samples of size n=1886 from a population, 95% of the samples would fall inside our margin of error ±2.19%, and only 5% of the samples would fall outside.

Study Participants

This section provides background on the makeup of the study.

Figure 1 shows the percentage of overall study participants by market segment.


Figure 1: Study participants by market segment

Figure 2 shows the percentage of overall study eligible participants by their job description. An example of eligible participant would be a self-identified design or verification engineer, or engineering manager, who is actively working within the electronics industry. Overall, design and verification engineers accounted for 60 percent of the study participants.


Figure 2: Study participants job title description

Before I start presenting the findings from our 2014 functional verification study, I plan to discuss in my next blog (click here) general bias concerns associated with all survey-based studies—and what we did to minimize these concerns.

Quick links to the 2014 Wilson Research Group Study results


14 January, 2015

“Who Knew?” about verification IP (VIP), was the theme of a recent DeepChip post by John Cooley on December 18.  More specifically the article states, “Who knew VIP was big and that Wally had a good piece of it?”  We knew.

We knew that ASIC and FPGA design engineers can choose to buy design IP from several alternative sources or build their own, but that does not help with the problem of verification.  We knew that you don’t really want to rely on the same source that designed your IP, to test it.  We knew that you don’t want to write and maintain bus functional models (BFMs) or more complete VIP for standard protocols.  Not that you couldn’t, but why would you if you don’t have to?

We also knew that verification teams want easy-to-use VIP that is built on a standard foundation of SystemVerilog, compliant with a protocol’s specification, and is easily configurable to your implementation.  That way it integrates into your verification environment just as easily as if you had built it yourself.

Leading design IP providers such as ARM®, PLDA, and Northwest Logic knew that Mentor Graphics’ VIP is built on standards, is protocol compliant, and is easy to use.  In fact you can read more about what Jim Wallace, systems and software group director at ARM; Stephane Hauradou, CTO of PLDA; and Brian Daellenbach, president of Northwest Logic; have to say about Mentor Graphics’ recently introduced EZ-VIP technology for PCIe 4.0 (at this website ), and why they know that their customers can rely on it as well.

Verification engineers knew, too.  You can read comments from many of them (at Cooley’s website ), about their opinions on VIP.  In addition, Mercury Systems also knew.  “Mentor Graphics PCIe VIP is fully compliant with the PCIe protocol specification and with UVM coding guidelines. We found that we could drop it into our existing environment and get it up and running very quickly”, said Nick Solimini, Consulting DV Engineer at Mercury Systems. “Mentor’s support for their VIP is excellent. All our technical questions were answered promptly so we were able to be productive throughout the project”.

So, now you know,  Mentor Graphics’ Questa VIP is built on standard SV UVM, is specification compliant, is easy to get up and running and is an integral part of many successful verification environments today.  If you’d like to learn more about Questa VIP and Mentor Graphics’ EZ-VIP technology, send me an email, and I’ll let you in on what (thanks to Cooley and our customers) is no longer the best kept secret in verification.  Who knew?

, , , , , , , ,

24 November, 2014

SystemVerilog Testbench Debug – Are we having fun yet?


Debug should be fun. Watching waveforms march by, seeing ERRORS and WARNINGS pop out in a transcript file, tracing drivers back to their source, understanding race conditions between simulators and between source code changes – and my favorite – debugging random stability issues. Fun.

Old School – logfiles and interactive

Or at least it should be fun. It used to be fun. I’d setup my collection of scripts to run tests and examine logfiles. Push the button and go for coffee or go home. The next day I’d examine log files and figure out what happened. Usually I’d have to jump into interactive simulation and debug on the fly. Set some breakpoints and watch what happened. That was then. My tests and RTL were all Verilog. Life was good. I was in control of what was going on, and could get my head around it.

New School – logfiles, interactive and class handles

Fast-forward to today. Still have scripts to run tests. Still have log files. Still push the button and get coffee or go home. Still jump into interactive simulation. Still set breakpoints. But now my tests are SystemVerilog class-based – usually UVM. My tests are C code. My tests are constrained random tests. Debug just got harder. I can’t fit the whole testbench + RTL into my head at once. I need help.

Debugging your class based testbench

I prefer to do as much debug as possible in “post-sim” mode. I want to run simulation and capture as much as possible. Then debug my wavefile and source code. What to do about my SystemVerilog class based testbench? Easy. Capture my classes in the wave database. Show them to me in the wave window.

<UVM Testbench class hierarchy window and those same classes in the wave window>

Wave Window

Wave Window

But that’s not possible. Is it? What IS possible?

What? Objects in the wave database? Yes. Objects and their members in the wave database.

Examine the values of class member variables in post-sim mode. Use the waveform window for classes and class member variables just like signals.

What about the handles that are in my classes? Can I chase them to other objects? Yes. Follow class handle “pointers” to other objects – essentially exploring the OBJECT SPACE that existed at THAT time during simulation. But I’m in post sim!

Can I see all the sequence items that hit my driver? Yes. How? Just put the driver “handle” into the wave window and “open” it. You can see the virtual interface handle (if you have one). You can see the transactions that went through the driver (the driver did a ‘get_next_item (t)’ 100,000 times!).

<Transaction handle ‘t’ from the driver in the wave window, with the driver’s virtual interface>

Driver and 't' in Wave Window

Driver and ‘t’ in Wave Window

In the wave window? Yes. All 100,000 of them? Yes.

Now I’m having fun again. That’s great. I can see what’s going on inside my objects. In post-sim mode.

What’s NOT possible?

Will it babysit? No. One thing at a time.

Are you having fun yet?

Find more details in Verification Horizons article – Old School vs. New School – Visualizer and on Verification Academy – Verification and Debug: Old School Meets New School 

You can find all the sessions on New School verification techniques via the following link:

, , , , , ,

@dennisbrophy Tweets

  • Loading tweets...

@dave_59 Tweets

  • Loading tweets...

@jhupcey Tweets

  • Loading tweets...