Posts Tagged ‘IEEE’

30 July, 2015

Accellera Handoffs UVM to IEEE

It has been a long path from Mentor’s AVM to IEEE P1800.2.  But the moment has arrived: Accellera has formally announced UVM 1.2 will be submitted as a contribution to the IEEE P1800.2™ working group.

Verification Methodology Beginnings

As the IEEE finalized approval of the initial release of SystemVerilog (IEEE Std. 1800™) in 2005, I floated the idea of the need for a methodology that would be a companion to it.  At the time there was little to no industry desire to explore this opportunity in earnest – apart from interest by Mentor Graphics – so we launched our Advanced Verification Methodology (AVM) and set a new direction for an open functional verification methodology.  We built implementations of AVM based on SystemVerilog and SystemC (IEEE Std. 1666™).  We also pioneered an open-source mechanism based on the Apache 2.0 license which is now the accepted license to foster global and rapid open-source adoption in the EDA industry.  And as others joined with us in this journey, AVM grew to become OVM, then UVM.  Now UVM is set to become an IEEE standard.  The IEEE has assigned it project number 1800.2.

imagePath to IEEE

To say we are pleased to see UVM move to the IEEE is an understatement.  We congratulate the Accellera UVM team on its accomplishment and look forward to participate in this phase of UVM’s standardization. Since our first public announcement on May 8, 2006 when we introduced the world to AVM and announced support for it from 19 of our Questa Vanguard Partners, to our announced collaboration with Cadence Design Systems on the development of the Open Verification Methodology (OVM) on August 16, 2007 and the eventual announcement January 8, 2010 that Accellera adopts OVM as the basis of its Universal Verification Methodology, we have guided its development and supported a path for the Big-3 EDA to voice positive public support.  We are thrilled Accellera has announced its delivery of UVM to the IEEE for ongoing standardization and maintenance.

IEEE Standardization

What comes next?  The IEEE P1800.2 (UVM) project has announced a Call for Participation and kickoff meeting to be held August 6, 2015 from 9am – 11am PDT.  The first meeting will be held via teleconference.  In order to attend, you will need to register for the meeting.  Membership in the IEEE project will be “entity-based” with one company, one vote.  The call for participation has details on membership requirements in order to observe or actively participate.  The 1800.2 project will only focus on the written specification and not the open-source base class library (BCL).  The Accellera UVM TSC will continue to update the BCL.  Accellera has committed to keep the BCL implementation current with changes proposed and approved by the IEEE 1800.2 working group.  This is just like the arrangement Accellera has with the IEEE for SystemC.

Join us at the upcoming meeting and remember to register in order to attend!

 

, , , , , , , , , ,

27 July, 2015

ASIC/IC Language and Library Adoption Trends

This blog is a continuation of a series of blogs related to the 2014 Wilson Research Group Functional Verification Study (click here).  In my previous blog (click here), I presented our study findings on various verification technology adoption trends. In this blog, I focus on language and library adoption trends.

As previously noted, the reason some of the results sum to more than 100 percent is that some projects are using multiple languages; thus, individual projects can have multiple answers.

Figure 1 shows the adoption trends for languages used to create RTL designs. Essentially, the adoption rates for all languages used to create RTL designs is projected to be either declining or flat over the next year, with the exception of SystemVerilog.

2014-WRG-BLOG-ASIC-10-1

Figure 1. ASIC/IC Languages Used for RTL Design

Figure 2 shows the adoption trends for languages used to create ASIC/IC testbenches. Essentially, the adoption rates for all languages used to create testbenches are either declining or flat, with the exception of SystemVerilog. Nonetheless, the data suggest that SystemVerilog adoption is starting to saturate or level off at about 75 percent.

2014-WRG-BLOG-ASIC-10-2

Figure 2. ASIC/IC Languages Used for  Verification (Testbenches)

Figure 3 shows the adoption trends for various ASIC/IC testbench methodologies built using class libraries.

2014-WRG-BLOG-ASIC-10-3

Figure 3. ASIC/IC Methodologies and Testbench Base-Class Libraries

Here we see a decline in adoption of all methodologies and class libraries with the exception of Accellera’s UVM3, whose adoption increased by 56 percent between 2012 and 2014. Furthermore, our study revealed that UVM is projected to grow an additional 13 percent within the next year.

Figure 4 shows the ASIC/IC industry adoption trends for various assertion languages, and again, SystemVerilog Assertions seems to have saturated or leveled off.

2014-WRG-BLOG-ASIC-10-4

Figure 4. ASIC/IC Assertion Language Adoption

In my next blog (click here) I plan to present the ASIC/IC design and verification power trends.

Quick links to the 2014 Wilson Research Group Study results

, , , , , , , , , , , , , , , ,

7 May, 2015

For all things verification, you will want to stop by the Verification Academy booth #2408 at DAC to interact with experts exploring the challenges of IC design and verification.  At the top of each hour, the Verification Academy will feature a presentation followed by a lively conversation.  Presentations will not be repeated so each hour will be unique.

We have themed each of the days as well:

  • Monday is “Debug Day
  • Tuesday is “Standards & FPGA Day
  • Wednesday is “Formal Verification Day

Naturally, you will find a few exceptions to those rules when you look at the program in detail.  Please register for Verification Academy sessions here: Monday Registration | Tuesday Registration | Wednesday Registration.  [NOTE: the Verification Academy sessions are highlighted with a blue background when you visit the registration site.]  A concise listing of all the Verification Academy sessions can be found here.

We will feature an end of the day reception on Monday at the Verification Academy booth after the last presentation.  Neil Johnson (XtremeEDA) and Mentor’s Harry Foster will explore Agile Evolution in SoC Verification in that last session.  The session begins at 5pm.  Neil is a proponent of this methodology as a means to to help build in design quality and simplify the task of verification.  In addition to being an advocate for this, he is also a practitioner of it.  He is an open-source hardware developer and Moderator at www.AgileSoC.com.  We think the conversation that follows this informative session will be a lively one in which we invite everyone to continue over cocktails and hor d’oeuvres at 5:30pm.

We are sponsoring other events outside of the Verification Academy as well.  Tuesday is truly “Standards Day” at DAC.  In addition to the standards theme at the Verification Academy booth, you can kick off the day at the Accellera Breakfast and later in the day attend the IEEE DASC, Accellera and Si2 System Level Low Power Workshop.  Here is a partial list of Standards Day activities:

Registration

If you have not yet registered for DAC, do so now.  If you do not have plans to register for the full technical conference, many conference events are fee free if you select the “I LOVE DAC” registration option before May 19th!  In fact, all the “Standards Day” events listed above are free with early I Love DAC registration. Simply click here and you will be taken to the “I Love DAC” location to register.  Register before May 19th as after that date a $95 minimum fee sets in.

See you at DAC!

, , , , , , , , , ,

3 April, 2015

It is always good to pause to recognize the companies and individuals with whom we collaborate to create the verification flows and solutions that allow the simplest and most complex devices and systems to come to life.  It is this time of year when the fruit of collaboration has generally been shared publicly.  This is probably the case, in no small part, to the nearing of the annual trek to the Design Automation Conference (DAC).  As we get closer to that week in June this year, I will discuss it even more.  But now I would like to offer a look back at two major milestones around this time of the year that shaped our future.

20 Years Ago

On April 3, 1995, we announced “Device Vendors Providing Library Support to Mentor.”  Our ModelSim simulator gained support from 12 ASIC and programmable logic vendors.  Until then, Mentor’s gate-level simulation was provided by QuickSim and its large collection of ASIC vendor libraries and flows.  With the emergence of VITAL (VHDL Initiative Towards ASIC Libraries) and as an IEEE standards project for it (1976.4) emerged, we continued our activities to drive knowledge about VITAL and educate and help the rest of the ASIC vendor community so they could bring to market their own simulation libraries for ModelSim.

As we added Verilog to the language mix, those Verilog libraries were likewise qualified and offered to the mutual customers we shared with our valued ASIC Vendor partners.  ModelSim grew to be a very popular product and the value of collaboration taught us the importance of shared collaboration.

10 Years Ago

In mid May 2005, we launched our Questa Vanguard Partnership (QVP) program modeled on the ModelSim program.  SystemVerilog 3.1a had been released by Accellera and was in the final stages of IEEE certification which was to come in November 2005.  But to get a jump on solidifying business relationships with our partners and to encourage support of SystemVerilog we began to work with companies around the world who expressed an interest to build a vibrant ecosystem.  A lot was accomplished in the six months between the launch of the QVP program to the approval of the first IEEE SystemVerliog 1800-2005 standard.

But it was good to pause then too and celebrate the standard with our new Questa partners, our mainstay semiconductor library partners and competitors in Japan.  Upon IEEE approval of the standard, Accellera in conjunction with the Big-3 EDA companies and CQ Publishing (Japan), held a “Happy Birthday” celebration reception.  I have to offer special thanks to my friends at Synopsys for the idea.  And, yes, we all know that this November will be lucky 10 years for SystemVerilog and we have already started to discuss what can be done at the annual fall standards meetings in Japan to celebrate this milestone.

Tomorrow (DAC)

As I mentioned, the great thing about this time of the year is the planning for DAC.  Many good things have happened in the last year.  Last year, at Mentor Graphics’ urging and our public commitment to donate technology, Accellera started a “Proposed Working Group” on Portable Stimulus to determine the viability of a standards project.  Accellera formally approved the formation of the Portable Stimulus Working Group in December 2014.  At the Verification Academy booth at DAC, we will certainly offer updates on this work and affirm our sustained commitment to the development of this standard.  I will share full details about what, when and where for the Verification Academy booth at DAC later.

But wait!  There will probably be more.  I can assure you, I will post a few more times during this final two-month journey to DAC.  And as the daily program for the Verification Academy booth is finalized, I will share its content my thoughts on this.  And as industry events, like the Accellera DAC Breakfast are finalized, I will make this part of my commentary on DAC 2015 as well.  It seems this DAC will be a busy DAC.

But this is something you can do now!  If you don’t know if you want to attend the technical program yet, you should at a minimum secure a free pass to the exhibit floor and access to some open industry events.  If you register by May 19th, you can choose the “I Love DAC” registration – complements of ATopTech, Atrenta, and Calypto.  After May 19th, it is no longer free.  So why not register now?  I look forward to seeing you at DAC.

, , , , , , , , , , ,

20 August, 2014

The ever popular Accellera Design & Verification Conference held annually in Silicon Valley is going global.  Accellera System Initiative has expanded many of its SystemC user group events to be more inclusive of other Accellera and IEEE standards.  In doing so, the local organizers of these events have moved to adopt the popular DVCon USA style to organize their events to include this large complement of standards.  If you want to attend, participate or contribute to the events, follow the links as shared below.

Mentor Graphics is excited to participate and sponsor these user-led events with a keynote address, technical paper presentations and educational tutorials.  We look forward to see you in September for DVCon India in Bangalore and in October for DVCon Europe in Munich.

DVCon Europe (14-15 October 2014 | Munich, Germany) will target the application of standardized languages, tools, and methodologies for the design and verification of electronic systems and integrated circuits. The two day event will feature tutorials on the first day and technical paper presentations and poster sessions on the second day.  The DVCon Europe program list the details of the conference.  It is collocated with the annual Forum on Design Languages (FDL), which runs from 14-16 October 2014 in case you want to extend your stay for an extra third day.

At DVCon Europe Mentor Graphics is collaborating with our industry peers and users on a tutorial titled Enabling Energy-Aware System Level Design with UPF-Based System Level Power Models. As power has become one of the major concerns in design equaling those of feature, function and performance, more advances are needed to address system power challenges.  The tutorial will explore the use of IEEE Std. 1801™ (UPF) and how design and verification flows can best use it.

Mentor Graphics will also sponsor a tutorial titled Creating Portable Tests with a Graph-Based Test Specification.  It will cover an overview of a graph-based test description language that raises the level of verification abstraction to address system level challenges. This technology is being used by many successful verification teams around the world today and it is the technology we have committed to help build a new standard upon in Accellera.

DVCon India (25-26 September 2014 | Bangalore, India) is the first year of the transition of the popular Indian SystemC User Group (ISCUG) meeting into an event that expands to cover topics that bring together all the stakeholder involved in design and verification of IP, SoC, ASIC, FPGA and system level solutions.   The event is over two days with common sessions in the morning for keynote addresses.  The attendees will then break into an ESL track and Design & Verification track for focused sessions.

Mentor Graphics will sponsor a tutorial session as well as host the keynote presentation by Mentor Graphics CEO, Dr. Walden C. Rhines.  Dr. Rhines will review recent Wilson Research Group study results on the ongoing convergence of SoC design practices towards a common methodology, independent of specify tools being use. In this keynote, Dr. Rhines identifies the common attributes of SoC methodology that are emerging, and will highlight specific capability enablers for the further optimization of SoC design verification.

Registration for both events is now open and I hope you have time in your calendar to make it there.  Both events will have an exhibition area where you can also catch up on recent updates to our products and discuss what you think should be added next.  The Mentor Graphics team looks forward to meeting you there!

, , , , , , , ,

9 July, 2014

Accellera has announced the completion of a multi-year effort to update its latest edition of the Universal Verification Methodology (UVM).  In completing this effort, the UVM 1.2 Class Reference Document was approved as an Accellera standard and the UVM Working Group has supplied an accompanying open-source reference implementation.  Questa supports UVM 1.2.

In addition to the resources you can download from Accellera, additional information on UVM 1.2 can be found at the Verification AcademyHTML documentation can easily be found at the Verification Academy too.

If you are a user of UVM 1.1 and have not been part of the UVM 1.2 development effort, you should know your peers have been busy the past few years since the stabilization and completion of UVM 1.1 to drive global adoption of UVM and to add, enhance and extend UVM.  In UVM 1.2 Messaging is now object-oriented, Sequences can automatically raise and drop objects, the register layer can now control transaction order within bursts and numerous bugs in UVM 1.1 have been fixed to improve quality.

Backward Incompatibility

All these changes come with a cost to the current UVM 1.1 user community.  When Accellera announced UVM 1.2 availability, it also disclosed some of the new features introduce backward incompatibility.  To reduce those issues, Accellera is making release notes and a one way conversion script part of the UVM 1.2 kit to ease the migration path forward.

If you follow the Verification Academy Cookbook rules, you will probably not see any impact from the backward compatibility issues.  And if you control your total verification environment, you will probably find it simpler to migrate forward as well.  Those who depend on outside resources will need to make sure those resources (like Verification IP) migrate forward to UVM 1.2 so you can migrate forward to UVM 1.2.  Mixing UVM 1.1 and UVM 1.2 was not considered by the Accellera UVM Working Group and is fraught with unknown issues.  We consider the migration an all or nothing proposition.  If you have multi-division, multi-company projects underway, it would be prudent to plan you move to UVM 1.2 with care at the conclusion of projects and when all suppliers and participating teams can migrate to UVM 1.2.

Public Review Period

Accellera seeks your input and feedback on UVM 1.2.  To support this, a public review forum on the Accellera website has been established to allow users to catalog issues, ask questions and generally offer feedback to help improve UVM 1.2 quality.

The public review process will end on October 1, 2014.  We encourage users to take the time now to test UVM 1.2 in their own environments and share their feedback to expidite the migration to UVM 1.2.

Path to IEEE

Public feedback will be taken into account along with further Accellera member testing to update UVM 1.2 prior to a committed hand-off to the IEEE for further standardization there later this year.  As this path unfolds, I will share updates on the standardization effort in the IEEE.

Verification Academy DAC 2014 UVM 1.2 Presentation

You will find many resources around the world on UVM 1.2.  At DAC 2014, the Verification Academy booth sponsored a session on UVM 1.2 titled  “UVM: What’s New, What’s Next, and Why You Care.”  If you did not attend DAC, you can still download the presentation and watch a video replay of it if you are a Verification Academy “full access” member (free registration required; restrictions apply).

The presentation by Tom Fitzpatrick goes into detail on the UVM 1.2 topic.  Importantly in Tom’s presentation is a discussion about what you should care about today.  You may find that software is a big issue and that his thesis challenges one to ask if UVM 1.2 is stuck in the past rather than addressing what should be addressed next.  I invite you to download the presentation and watch the video and share with me your thoughts. What do you think?

, , , , ,

8 September, 2013

Schedules, respins, and bug classification

This blog is a continuation of a series of blogs that present the highlights from the 2012 Wilson Research Group Functional Verification Study (for a background on the study, click here).

In my previous blog (Part 11 click here), I focused on some of the 2012 Wilson Research Group findings related to formal verification, acceleration/emulation, and FPGA prototyping trends. In this blog, I present verification results findings in terms of schedules, respins, and classification of functional bugs.

We have seen in previous blogs that a significant amount of effort is being applied to functional verification. An important question the various studies have tried to answer is whether this increasing effort is paying off.

Schedules

Figure 1 presents the design completion time compared to the project’s original schedule. What is interesting is that we really have not seen a change in this trend in over five years. That is, 67 percent of all projects are behind schedule with respect to the original plan. One could argue that designs have increased in complexity in terms of gate counts, embedded processors, and lots of software between 2007 and 2012. Yet, achieving project schedules has not worsened.

Figure 1. Non-FPGA design completion time compared to the project’s original schedule

What’s interesting is that the FPGA designs follows this same trend, as shown in figure 2.

Figure 2. Non-FPGA vs. FPGA design completion time relative to the original plan

Respins

Other verification data points worth looking at relate to the number of spins required between the start of a project and final production. Figure 3 shows this industry trend all the way back to the 2004 Collett study. Again, even though designs have increased in complexity, the data suggest that projects are not getting any worse in terms of the number of spins before production. If anything, there appears to be a slight improvement recently in this trend in projects requiring three or more spins.

Figure 3. Number of spins required from start of project until production

Bug classification

Figure 4 shows various categories of flaws that are contributing to respins. Note that the sum is greater than 100% on this graph, which is because a respin can be triggered by multiple flaws. 

Figure 4. Number of spins required from start of project until production

Although logic and functional flaws remain the leading causes of respins, the data suggest that there has been some improvement in this area over the past eight years. Is this due to the increased amount of reuse that is occurring in the industry? Or is the industry maturing its verification processes? Or is something entirely different going on? This data point raises some interesting questions worth exploring.

Figure 5 examines root cause of functional bugs by various categories. The data suggest an improvement in logic errors over an eleven year period, and potentially, a worsening of problems related to changing specifications. Problems associated with changing, incorrect, and incomplete specifications is a common theme I often hear when visiting customers.

Figure 5. Root cause of functional flaws

In my next blog (click here), I plan to wrap up this series of blogs in what I call the Epilogue—which will discuss potential gotchas and cautions on interpreting certain aspects of the data and thoughts about how the data might be used constructively.

, , ,

19 August, 2013

Verification Techniques & Technologies Adoption Trends

This blog is a continuation of a series of blogs that present the highlights from the 2012 Wilson Research Group Functional Verification Study (for background on the study, click here).

In my previous blog (Part 9 click here), I focused on some of the 2012 Wilson Research Group findings related to design and verification language and library trends. In this blog, I present verification techniques and technologies adoption trends, as identified by the 2012 Wilson Research Group study.

An interesting trend we are starting to see is that the electronic industry is maturing its functional verification processes, whether they are targeting their designs at IC/ASIC or FPGA implementations. This blog provides data to support this claim. An interesting question you might ask is, “What is driving this trend?” In some of my earlier blogs (click here for Part 1 and Part 2) I showed an that design complexity is increasing in terms design sizes and number of embedded processors. In addition, I’ve presented trend data that showed an increase in total project time and effort spent in verification (click here for Part 5 and Part 6). My belief is that the industry is being forced to mature its functional verification processes to address increasing complexity and effort.

Simulation Techniques Adoption Trends

Let’s begin by comparing  non-FPGA adoption trends related to various simulation techniques from the 2007 Far West Research study  (in blue) with the 2012 Wilson Research Group study  (in green), as shown in Figure 1.

Figure 1. Simulation-based technique adoption trends for non-FPGA designs

You can see that the study finds the industry increasing its adoption of various functional verification techniques for non-FPGA targeted designs. Clearly the industry is maturing its processes as I previously claimed.

For example, in 2007, the Far West Research Group found that only 48 percent of the industry performed code coverage. This surprised me. After all, HDL-based code coverage is a technology that has been around since the early 1990’s. However, I did informally verify the 2007 results through numerous customer visits and discussions. In 2012, we see that the industry adoption of code coverage has increased to 70 percent.

In 2007, the Far West Research Group study found that 37 percent of the industry had adopted assertions for use in simulation. In 2012, we find that industry adoption of assertions had increased to 63 percent. I believe that the maturing of the various assertion language standards has contributed to this increased adoption.

In 2007, the Far West Research Group study found that 40 percent of the industry had adopted functional coverage for use in simulation. In 2010, the industry adoption of functional coverage had increased to 66 percent. Part of this increase in functional coverage adoption has been driven by the increased adoption of constrained-random simulation, since you really can’t effectively do constrained-random simulation without doing functional coverage.

Now let’s look at  FPGA adoption trends related to various simulation techniques from the 2010 Far West Research study  (in pink) with the 2012 Wilson Research Group study  (in red).

Figure 2. Simulation-based technique adoption trends for non-FPGA designs

Again, you can clearly see that the industry is increasing its adoption of various functional verification techniques for FPGA targeted designs. This past year I have spent a significant amount of time in discussions with FPGA project managers around the world. During these discussions, most mangers mention the drive to improve verification process within their projects due to  rising complexity of this class of designs. The Wilson Research Group data supports these claims.

In fact, Figure 3 illustrates this maturing trend in the FPGA space, where we saw a 15 percent increase in the adoption of RTL simulation and an 8.5 percent increase in the adoption of code coverage. For complex FPGA designs, the traditional approach of “burn and churn” and debug in the lab is no longer a viable option. Nonetheless, it is still somewhat alarming that 31 percent of the FPGA study participants work on projects that perform no RTL simulation.

Figure 3. FPGA projects maturing their verification processes

Signoff Criteria Trends

We saw earlier in this blog the increased adoption of coverage techniques in the industry. Coverage has become a major component of a project’s verification signoff criteria. In Figure 4, we see how coverage has increased in importance in verification signoff criteria within the past five years, while other decision attributes have declined in terms of importance.

Figure 4. Non-FPGA functional verification signoff criteria trends

We see the same trends for FPGA designs, as shown in Figure 5.

Figure 5. FPGA functional verification signoff criteria trends

In my next blog (click here), I plan to continue the discussion related to adoption of various verification technologies and techniques as identified by the 2012 Wilson Research Group study.

, , , , , , , , , ,

12 August, 2013

Language and Library Trends (Continued)

This blog is a continuation of a series of blogs that present the highlights from the 2012 Wilson Research Group Functional Verification Study (for a background on the study, click here).

In my previous blog (Part 8 click here), I focused on design and verification language trends, as identified by the Wilson Research Group study. This blog presents additional trends related to verification language and library adoption trends.

You might note that for some of the language and library data I present, the percentage sums to more than 100 percent. The reason for this is that some participants’ projects use multiple languages or multiple testbench methodologies.

Testbench Methodology Class Library Adoption

Now let’s look at testbench methodology and class library adoption for IC/ASIC designs. Figure 1 shows the trends in terms of methodology and class library adoption by comparing the 2010 Wilson Research Group study (in blue) with the 2012 study (in green). Today, we see a downward trend in terms of adoption of all testbench methodologies and class libraries with the exception of UVM, which has increased by 486 percent since the fall of 2010. The study participants were also asked what they plan to use within the next 12 months, and based on the responses, UVM is projected to increase an additional 46 percent.

Figure 1. Methodology and class library trends

Figure 2 show the adoption of testbench methodologies and class libraries for FPGA designs (in red). We do not have sufficient data to show prior adoption trends in the FPGA space, but we anticipate that our future studies will enable us to do this. However, we did ask the FPGA study participants which testbench methodologies and class libraries they were planning to adopt within the next 12 months. Based on these responses, we anticipate that UVM adoption will increase by 40 percent, and OVM increase by 24 percent in the FPGA space.

Figure 2. Methodology and class library trends

Assertion Languages and Libraries

Finally, let’s examine assertion language and library adoption for IC/ASIC designs. The Wilson Research Group study found that 63 percent of all the IC/ASIC participants have adopted assertion-based verification (ABV) as part of their verification strategy. The data presented in this section shows the assertion language and library adoption trend related to those participants who have adopted ABV.

Figure 3 shows the trends in terms of assertion language and library adoption by comparing the 2010 Wilson Research Group study (in blue), the 2012 Wilson Research Group study (in green), and the projected adoption trends within the next 12 months (in purple). The adoption of SVA continues to increase, while other assertion languages and libraries either remain flat or decline.

Figure 3. Assertion language and library adoption for Non-FPGA designs

Figure 4 shows the adoption of assertion language trends for FPGA designs (in red). Again, we do not have sufficient data to show prior adoption trends in the FPGA space, but we anticipate that our future studies will enable us to do this. We did ask the FPGA study participants which assertion languages and libraries they planned to adopt within the next 12 months. Based on these responses, we anticipate an increase in adoption for OVL, SVA, and PSL in the FPGA space within the next 12 months.

Figure 4. Trends in assertion language and library adoption for FPGA designs

In my next blog (click here), I plan to focus on the adoption of various verification technologies and techniques used in the industry, as identified by the 2012 Wilson Research Group study.

, , , , , , , , , ,

5 August, 2013

Language and Library Trends

This blog is a continuation of a series of blogs that present the highlights from the 2012 Wilson Research Group Functional Verification Study (for a background on the study, click here).

In my previous blog (Part 7 click here), I focused on some of the 2012 Wilson Research Group findings related to testbench characteristics and simulation strategies. In this blog, I present design and verification language trends, as identified by the Wilson Research Group study.

You might note that for some of the language and library data I present, the percentage sums to more than one hundred percent. The reason for this is that some participants’ projects use multiple languages.

RTL Design Languages

Let’s begin by examining the languages used for RTL design. Figure 1 shows the trends in terms of languages used for design, by comparing the 2007 Far West Research study (in gray), the 2010 Wilson Research Group study (in blue), the 2012 Wilson Research Group study (in green), as well as the projected design language adoption trends within the next twelve months (in purple) as identified by the study participants. Note that the design language adoption is declining for most of the languages with the exception of SystemVerilog whose adoption continues to increase.

Also, it’s important to note that this study focused on languages used for RTL design. We have conducted a few informal studies related to languages used for architectural modeling—and it’s not too big of a surprise that we see increased adoption of C/C++ and SystemC in that space. However, since those studies have (thus far) been informal and not as rigorously executed as the Wilson Research Group study, I have decided to withhold that data until a more formal blind study can be executed related to architectural modeling and virtual prototyping.

Figure 1. Trends in languages used for Non-FPGA design

Let’s now look at the languages used specifically for FPGA RTL design. Figure 2 shows the trends in terms of languages used for FPGA design, by comparing the 2012 Wilson Research Group study (in red) with the projected design language adoption trends within the next twelve months (in purple).

Figure 2. Languages used for Non-FPGA design

It’s not too big of a surprise that VHDL is the predominant language used for FPGA RTL design, although we are starting to see increased interest in SystemVerilog.

Verification Languages

Next, let’s look at the languages used to verify Non-FPGA designs (that is, languages used to create simulation testbenches). Figure 3 shows the trends in terms of languages used to create simulation testbenches by comparing the 2007 Far West Research study (in gray), the 2010 Wilson Research Group study (in blue), and the 2012 Wilson Research Group study (in green).

Figure 3. Trends in languages used in verification to create Non-FPGA simulation testbenches

The study revealed that verification language adoption is declining for most of the languages with the exception of SystemVerilog whose adoption is increasing. In fact, SystemVerilog adoption increased by 8.3 percent between 2010 and 2012.

Figure 4 provides a different analysis of the data by partitioning the projects by design size, and then calculating the adoption of SystemVerilog for creating testbenches by size. The design size partitions are represented as: less than 5M gates, 5M to 20M gates, and greater than 20M gates. Obviously, we find that the larger the design size, the greater the adoption of SystemVerilog for creating testbenches. Yet, probably the most interesting observation we can make from examining Figure 4 is related to smaller designs that are less than 5M gates. Here we see that 58.8 percent of the industry has adopted SystemVerilog for verification. In other words, it is safe to say that SystemVerilog for verification has become mainstream today and not just limited to early adopters or leading-edge design projects.

Figure 4. SystemVerilog (for verification) adoption by design size

Let’s now look at the languages used specifically for FPGA RTL design. Figure 5 shows the trends in terms of languages used for FPGA design, by comparing the 2012 Wilson Research Group study (in red) with the projected design language adoption trends within the next twelve months (in purple).

Figure 5. Trends in languages used in verification to create FPGA simulation testbenches

In my next blog (click here), I’ll continue the discussion on design and verification language trends as revealed by the 2012 Wilson Research Group Functional Verification Study.

, , , , , , , , , , , , , , , , , ,

@dennisbrophy Tweets

  • Loading tweets...

@dave_59 Tweets

  • Loading tweets...

@jhupcey Tweets

  • Loading tweets...