Where’s the Best Place to Put a Radiator in a Room? Part 4: Premature Simulation

One thing the Mechanical Analysis Division is not guilty of is vendor hubris. Despite the passion we have about our CFD based simulation solutions we know our place, especially in terms of where best to apply our solutions throughout the design process. CFD is a very powerful tool to predict 3D heat air flow and heat transfer but it certainly isn’t the only approach. As is common in both electronics cooling and built environment design, abstracting the topology of a design down to a simple network of connections between key parts allows for very quick estimates made as to its performance. Often the earliest type of simulation based approach, such methods are often defined in a spreadsheet to allow a first order accurate design starting point to be identified. After all, who on earth would detail a design to the 3D extent whereby a CFD simulation could be conducted without first confirming that, for example, the size of the radiator was correct. Who indeed…

Most designs lend themselves to being compartmentalised, reduced to a series of objects with connections between them. Obvious for electrical and piping systems which by their nature have a series of 1D connections between node points. Function dictates that occupied spaces are separated by partition walls, turning them into rooms. We can then consider a room to be a single point that we’re interested in.

From a heat transfer (and thus thermal comfort) perspective our room is connected to its surroundings. We can construct a real simple network to show those connections. We then assume what the temperature of those surrounding nodes are. Outside = 0 degC (or as we call that in the UK, ‘late summer’), neighbouring rooms lets say are at 20degC, undergound somewhere in between. For our room we will set it at the desired temperature, typically 22degC.

To work out how much heat would need to be put into our room to support these temperatures (differences), and thus how big a radiator would be required, we need to know how well connected the room is to its neighbouring surroundings. In the built environment world U-Values are used. Numbers that represent how difficult heat finds it to go ‘through’ that U-Value. These values are quoted by suppliers to the building industry to characterise things like windows, expanded foam insulation etc. and are quoted by building regulations as maximum values for say internal and external walls. For now, considering my design already ‘exists’, I’ve backed out the U-Values of the walls etc from the settings I put into FloVENT originally (warning, about to get a bit techy: U value is the inverse of the sum of all resistances the heat experiences, boundary layer+radiative exchange then conductive resistance then the boundary layer+radiative exchange on the other side, half input, half predicted by CFD). Then it’s simply a case of working out how many Watts goes out of the room using the following table:

2549 Watts to maintain these temperature values. Or in other words, this is how much power a radiator would have to provide to maintain the room at 22degC in its prescribed surroundings.

[Note to anyone with any experience of U-Values: yes, you are right, with values so big this room would never get past the building inspector nowadays. Radiator sizing isn't the only thing I'm good at getting wrong when designing built environments...]

[Note to anyone with electronics cooling experience: yes, this is looking very similar to the use of thermal resistance metrics in the prediction of operating temperature, or maximum allowable power in this case]

How much power was the original hastily-defined-with-not-much-forethought radiator giving off in the FloVENT model? I’d defined it at a fixed temperature of 70degC then from the simulation had FloVENT tell me the total heat loss from it was:

[Tip for FloVENT (and FloTHERM) users: select columns or rows in Tables, right mouse click and select 'hide unselected rows/columns' to get the above, or launch Excel from Tables and have the selected data pushed directly into Excel]

The original radiator gave out (-ve heat gain) 1270W. No wonder there were so many people dissatisfied, regardless of its location, considering nearly twice that power would be required to get the desired 22 degC. So how big should a radiator be to give off ~2.5kW? Instead of looking into Nusselt number correlations for fixed temperature vertical surfaces I decided to Google instead for “Radiator Power Output” and found this handy DIY reference page with a nice table that related power output to radiator size. From that figured out how big the radiator should have been (it was indeed about twice the size than I’d set before), set that and re-simulated in FloVENT.

Let’s check out the 25% PPD (percentage people dissatisfied) blanket shape. Hardly anywhere would so many people be dissatisfied now. In fact, taking the average over the whole room, only 9% of the space would result in people complaining compared to nearly 19% before, with the radiator in the same place.

So, position isn’t always the critical factor, size is often more important (so I’ve been told on one or two occasions).

Next time I’ll explain how we’ve used this application as an interview question for many years and how now I’m persona non-grata for giving away the answers…

9th August 2012 Ross-on-Wye

Post Author

Posted August 9th, 2012, by

Post Tags

, , , ,

Post Comments

2 Comments

About Robin Bornoff's blog

Views and insights into the concepts behind electronics cooling with a specific focus on the application of FloTHERM to the thermal simulation of electronic systems. Investigations into the application of FloVENT to HVAC simulation. Plus the odd foray into CFD, non-linear dynamic systems and cider making. Robin Bornoff's blog

Comments

2 comments on this post | ↓ Add Your Own

Commented on August 13, 2012 at 3:59 am
By Janet Beckett

Interesting, you do know that there is an engineering profession that does this kind of thing for a living? It’s not normally just left up to plumbers to decide (other than in houses) :0)
Janet Beckett MCIBSE

Commented on August 13, 2012 at 4:14 am
By Robin Bornoff

Of course Janet! I’d hope that FloVENT would be somewhere in the toolbox of a member of CIBSE. I don’t think my plumber can actually spell CIBSE.

Add Your Comment

Archives

August 2014
  • Top 10 FloTHERM V10 Features – #8: Thermostatic Control with Hysteresis
  • July 2014
  • Top 10 FloTHERM V10 Features – #7: Super-fast Parallel CFD Solver
  • June 2014
  • Top 10 FloTHERM V10 Features – #6: Integrated Summary Columns
  • Top 10 FloTHERM V10 Features – #5: FloSCRIPT
  • Top 10 FloTHERM V10 Features – #4: Updated CAD
  • Top 10 FloTHERM V10 Features – #3: FEA Interfacing
  • February 2014
  • Top 10 FloTHERM V10 Features – #2: Advanced Find
  • Top 10 FloTHERM V10 Features – #1: New GUI
  • January 2014
  • Come and Learn about the Latest Release of FloTHERM, V10
  • Heat Your Home Office for 8p a Day. Part 5 – Putting it All Together
  • December 2013
  • Heat Your Home Office for 8p a Day. Part 4 – Comfort Temperature
  • Heat Your Home Office for 8p a Day. Part 3a – Was Dave Right?
  • November 2013
  • Heat Your Home Office for 8p a Day. Part 3 – It Takes Time
  • Heat Your Home Office for 8p a Day. Part 2 – Thermal Interception
  • Heat Your Home Office for 8p a Day. Part 1 – Really?
  • Happy 25th Birthday FloTHERM !
  • July 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 3: Pads, Vias and Undersinking
  • May 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 2: Heat Flow Budgets
  • Why Not Just Shove a Heatsink on Top of it? Part 1
  • April 2013
  • Experiment vs. Simulation, Part 5: Detailed IC Package Model Calibration Methodology
  • CFD – Colourful Friday Distractions
  • Experiment vs. Simulation, Part 4: Compact Thermal Models
  • February 2013
  • Experiment vs. Simulation, Part 3: JESD51-14
  • January 2013
  • Experiment vs. Simulation, Part 2: TIM Thermal Conductivity
  • Experiment vs. Simulation, Part 1: Them and Us.
  • September 2012
  • “Why Cartesian Grids Are Good”
  • August 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 5: Get a Job
  • Where’s the Best Place to Put a Radiator in a Room? Part 4: Premature Simulation
  • July 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 3: 13% Better
  • Where’s the Best Place to Put a Radiator in a Room? Part 2: PMV and other TLAs
  • Where’s the Best Place to Put a Radiator in a Room. Part 1: Such Things are Important
  • May 2012
  • Agile software development practices in the Mechanical Analysis Division
  • A Little Goes A Long Way (But A Lot Doesn’t Go Much Further)
  • April 2012
  • More Than Two Decades and Still Going Strong; FloTHERM and FloVENT V9.3 Now Released
  • Simulation Software So Simple Even Teenagers Can Use It
  • February 2012
  • Bottlenecks and Interface Materials; Part 3 – Relieving Thermal Bottlenecks Reduce Temperatures
  • January 2012
  • Bottlenecks and Interface Materials; Part 2 – When TIMs Go Bad
  • Bridging the Simulation Supply Chain; NXP Semiconductors, a Case in Point
  • Bottlenecks and Interface Materials; Part 1 – Great Thermal Bedfellows
  • Emails, more Emails and Jeff Bridges
  • LEDs; The future’s bright and hot.
  • December 2011
  • From Megawatts to Milliwatts; sub-micron scale thermal modelling with FloTHERM
  • November 2011
  • What! All that just for that? The bonkers world of CPU cooling.
  • October 2011
  • Ho, Ho, Ho! Facebook moves to Lapland
  • All Detailed Thermal IC Package Models are Wrong… Probably
  • Underfloor Electric Heating. Part III – Penny wise, pound foolish.
  • August 2011
  • Underfloor Electric Heating. Part II – Infrared Thermography
  • Underfloor Electric Heating. Part I: In by Christmas
  • June 2011
  • Come, meet FloTHERM/VENT/EFD users, learn and enjoy!
  • PC Overclocking and Aftermarket Modding. Part III – Power vs. Frequency?
  • PC Overclocking and Aftermarket Modding. Part II – Liquid Nitrogen Overclocking, How Cool is That?
  • May 2011
  • PC Overclocking and Aftermarket Modding. Part 1 – When Colour Matters.
  • April 2011
  • Desktop PC with Integrated Toaster – As if!
  • Thermal Design Perfection Starts with the use of FloTHERM PACK
  • We Love FloTHERM V9.2
  • Desktop PC with Integrated Toaster – the Future is Now
  • March 2011
  • Do you know the way to San Jose?
  • February 2011
  • Beer Fridge – A Case Study in Thermal Design. Part 6 – Baffles and Bottlenecks
  • January 2011
  • FloEFD HVAC Module – Taking Built Environment CFD Simulation to the Next Level
  • Beer Fridge – A Case Study in Thermal Design. Part 5 – Time for a FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 4 – FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 3 – Side Up or Upside Down?
  • December 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 2 – TEC Effect
  • November 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 1 – A Gift
  • What Can You Learn When You Turn It On?
  • We Love FloTHERM – 8 Reasons to Upgrade to V9.1
  • October 2010
  • On the Vilification of Smokers
  • Identifying Thermal Bottlenecks and Shortcut Opportunities – Taking Simulation to the Next Level
  • August 2010
  • How many frogs does a horse have?
  • It’s a wireless world! No it isn’t.
  • July 2010
  • Are you using ‘Smart’ in a way I am not familiar with?
  • An Interview With… Clemens Lasance
  • I was led to believe we’d have flying cars by now
  • Red Hot Electronic Thermal Analysis?
  • June 2010
  • The art of modelling using CFD. Part VI – Peripheral Boundary Conditions
  • The art of modelling using CFD. Part V – Grid
  • May 2010
  • The art of modelling using CFD. Part IV – Fans
  • The art of modelling using CFD. Part III – TIGs
  • The art of modelling using CFD. Part II – Grilles
  • The art of modelling using CFD. Part I – What happens if you cross art with science?
  • April 2010
  • How much do ‘U-Value’ good thermal insulation? Part VII – “Ooo, shut that door”
  • “A Faster Horse” – Mentor ‘IDEAS for Mechanical’ driving product development
  • March 2010
  • How much do ‘U-Value’ good thermal insulation? Part VI – revenge of the radiative heat flux
  • IC package representation is central to Electronics Cooling
  • How much do ‘U-Value’ good thermal insulation? Part V
  • February 2010
  • How much do ‘U-Value’ good thermal insulation? Part IV
  • How much do ‘U-Value’ good thermal insulation? Part III
  • How much do ‘U-Value’ good thermal insulation? Part II
  • January 2010
  • How much do ‘U-Value’ good thermal insulation? Part I
  • Keeping the caveman warm – HVAC blog
  • FloVIZ, the free FloTHERM/FloVENT CFD results viewer, try it, it’s free
  • ‘Heat Trees’ – taking a leaf out of natures book
  • The Most Extreme CFD Model Ever Ever – Explained
  • FloTHERM and its new XML neutral file format
  • The Most Extreme CFD Model Ever Ever
  • So, you want to predict component temperatures do you? Part VII
  • December 2009
  • So, you want to predict component temperatures do you? Part VI
  • So, you want to predict component temperatures do you? Part V
  • November 2009
  • A trip to MPH and Top Gear Live
  • So, you want to predict component temperatures do you? Part IV
  • So, you want to predict component temperatures do you? Part III
  • October 2009
  • So, you want to predict component temperatures do you? Part II
  • So, you want to predict component temperatures do you? Part I
  • Underfloor Thermal Insulation; Why? Part III
  • September 2009
  • Underfloor Thermal Insulation; Why? Part II
  • Underfloor Thermal Insulation; Why? Part I
  • Is all Software Rubbish?
  • August 2009
  • Thermatronic Stagnation (nothing to do with male deers)
  • Fractals: Gods Artwork, Part III
  • Thermatrons Must Leave
  • July 2009
  • At the Speed of Heat
  • A Load of HVAC TLAs
  • How-to: Invert your thermal model to good effect
  • Clogged cooling fins, a cautionary tale
  • Invert your thermal model to good effect
  • “I work with computers”
  • Fractals: Gods Artwork, Part II
  • Fractals: Gods Artwork, Part I
  • “All models are wrong, but some are useful” Part V
  • June 2009
  • 3D Electronics Cooling CFD, with FloTHERM, in Pictures
  • Spend some time with FlyGuy
  • “All models are wrong, but some are useful” Part IV
  • Flying
  • “All models are wrong, but some are useful” Part III
  • May 2009
  • “All models are wrong, but some are useful” Part II
  • “All models are wrong, but some are useful” Part I
  • Welcome along!