Bottlenecks and Interface Materials; Part 1 – Great Thermal Bedfellows

Probably due to the beer fridge, I now seem to be becoming the repository of broken electronic products with an expectation that the cause of their demise can be identified, retrospectively, using thermal simulation. This week my good colleague John Parry dumped a rather poorly DVD player on my desk with a ‘go on then’ look. There’s nothing quite like the sight of a scorched PCB to excite those of us working in the electronics cooling line of business here in the mechanical analysis division and that’s just what John and I found when inspecting the power supply board of this particular defunct DVD player.

Scorchio

I’m sure a wide variety of things have been photocopied, especially during company Christmas parties, but maybe never a PCB. It turned out to be the best way to capture the underside of the power board, both to capture the said scorching, also to get a map of the copper distribution that I’d need later when building the thermal model.

From a thermal perspective the TO220 amplifier was evidently the most critical component, the scorching was on the underside of the board directly beneath it. It was screwed to a vertical aluminium heat spreader with thermal paste used to achieve a good contact between the package case face and the spreader. Back in the day it took me a while to get my head round the idea that thermal contact between two objects can be enhanced by adding something else between them. The point being that you can never squeeze all the air out from between two solid contacting faces. Unlike moving air that is a great transporter (convector) of heat, stagnant air isn’t. Coming in at a tiny 0.026 W/mK (thermal conductivity) air is actually a great thermal insulator. Even the smallest amount of trapped air will cause a large thermal bottleneck. Getting goosebumps on your skin when cold is a Darwinistic throwback to that fact.

Thermal interface material - white sticky stuff

So, adding a paste/gel/putty/tape between the two objects will add some additional solid resistance but totally remove that pesky air resulting in an overall reduction in contact thermal resistance. That’s the theory anyway, unless you invest in a particularly cheap thermal interface material that can dry out, crack and lose its surface adhesion advantage. Why is it that cheap electronics always break? Go figure.

Building the FloTHERM model of the board was straight forward. The FloEDA application window allows for the import of populated PCB data to be imported directly from Expedition, Boardstation etc. Alternatively it can be used to quickly sketch out 3D PCB representations, including the layer stackup with the neat ability to import an image that represents the distribution of copper on each layer. For this board I imported the photocopier scanned image of the bottom layer then used FloEDA’s unique image processing capabilities to convert that into a thermal conductivity map of the distribution of FR4/Cu on the bottom layer.

The To220 detailed model was created using FloTHERM PACK. This involved a parametric definition of its construction and then pressing the ‘download detailed model’ button! The screw connecting it through the spreader plate and the spreader plate itself was manually defined in FloTHERM. The thermal interface itself was modelled as a 300 micron thick block with appropriate thermal conductivity.

With an assumed dissipation of 2.0W the predicted junction temperature comes out at a respectable 88 degC. This model remember represents the ‘working’ design where everything behaves as it was designed to do.

Examination of the heat flux vectors give further insight as to where the heat is flowing so as to produce the resulting temperature field. From the die, 85% of the heat passes through the thermal interface and on into the heat spreader. The other 15% passes down the leads, through the board to be spread throughout the bottom plane of the PCB where it is convected and radiated away to the rest of the DVD chassis.

Taking 2D slices through a 3D model often doesn’t take into account the more complex heat flow paths the heat weaves through on its way from its source (die) to the ambient. Looking at lines of heat flux in a semi-transparent view of the geometry highlights an interesting heat flow feature…

If the aluminium spreader was big enough so as to do its job properly all the heat would pass through it and from its vertical faces on into the surrounding air. As can be seen from the heat flux lines, a certain percentage actually passes through its pins back down into the PCB. Further examination of the predicted heat flux values indicates that, out of the 1.7W that passes into the spreader, 0.46W (27%) necks down through the pins. A thermal resistance in itself.

Never liking to see a bad thermal design, it’s at this stage I tend to get all indignant and demand to know why FloTHERM wasn’t applied in the design of this product. And this is the intended design, we haven’t even got onto the thermal interface failure yet!! Ach, enough of the moaning already.  In Part 2 we’ll get on to what happens when the thermal interface fails, using the display of the BN (bottleneck) number to help understand why and where the thermal design is deficient, allowing us to propose and simulate some targeted remedial thermal design modifications.

18th January 2012, Nottingham.

Post Author

Posted January 18th, 2012, by

Post Tags

, , , , , ,

Post Comments

4 Comments

About Robin Bornoff's blog

Views and insights into the concepts behind electronics cooling with a specific focus on the application of FloTHERM to the thermal simulation of electronic systems. Investigations into the application of FloVENT to HVAC simulation. Plus the odd foray into CFD, non-linear dynamic systems and cider making. Robin Bornoff's blog

Comments

4 comments on this post | ↓ Add Your Own

Commented on January 18, 2012 at 9:30 am
By Robin Bornoff

Hey Robin, great heat flux line image but what are the little upwards pointing lines coming off the spreader?

Commented on January 18, 2012 at 9:33 am
By Robin Bornoff

Hi Robin, long time no hear, how are you? Right, I truncated the ‘lifetime’ of the heatflux lines so as to not over complicate the image with loads of heat flux lines going all the way into the air (ambient). The little upwards ticks are where the heat enters the air and moves upwards (due to buoyancy) and is convected away. Heat flux lines inside the spreader = conduction, (truncated) heat flux lines outside the spreader = convection.

Yours
Robin.

Commented on January 18, 2012 at 11:51 am
By Robin Bornoff

Thanks Robin, clear.

[…] when the TIM fails a lot of the heat still makes its way to the spreader. As pointed out in the previous blog, the spreader is no way big enough to transfer all the heat to the air, a lot of it ends up going […]

Add Your Comment

Archives

October 2014
  • Thermal Bottlenecks. This is Hot, This is Why.
  • Blue LEDs. Since When is Improvement Invention?
  • Leg Hair? What a Drag
  • The Electronics Cooling Metaphorical Drinking Game
  • September 2014
  • Xilinx Patent for Critical Tj Prediction
  • Dell Precision – Spot on Thermal Design
  • Top 10 FloTHERM V10 Features – #11: Odds and Sods
  • Top 10 FloTHERM V10 Features – #10: Improved Solar Calculator
  • Top 10 FloTHERM V10 Features – #9: Data Center Simulation
  • August 2014
  • Top 10 FloTHERM V10 Features – #8: Thermostatic Control with Hysteresis
  • July 2014
  • Top 10 FloTHERM V10 Features – #7: Super-fast Parallel CFD Solver
  • June 2014
  • Top 10 FloTHERM V10 Features – #6: Integrated Summary Columns
  • Top 10 FloTHERM V10 Features – #5: FloSCRIPT
  • Top 10 FloTHERM V10 Features – #4: Updated CAD
  • Top 10 FloTHERM V10 Features – #3: FEA Interfacing
  • February 2014
  • Top 10 FloTHERM V10 Features – #2: Advanced Find
  • Top 10 FloTHERM V10 Features – #1: New GUI
  • January 2014
  • Come and Learn about the Latest Release of FloTHERM, V10
  • Heat Your Home Office for 8p a Day. Part 5 – Putting it All Together
  • December 2013
  • Heat Your Home Office for 8p a Day. Part 4 – Comfort Temperature
  • Heat Your Home Office for 8p a Day. Part 3a – Was Dave Right?
  • November 2013
  • Heat Your Home Office for 8p a Day. Part 3 – It Takes Time
  • Heat Your Home Office for 8p a Day. Part 2 – Thermal Interception
  • Heat Your Home Office for 8p a Day. Part 1 – Really?
  • Happy 25th Birthday FloTHERM !
  • July 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 3: Pads, Vias and Undersinking
  • May 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 2: Heat Flow Budgets
  • Why Not Just Shove a Heatsink on Top of it? Part 1
  • April 2013
  • Experiment vs. Simulation, Part 5: Detailed IC Package Model Calibration Methodology
  • CFD – Colourful Friday Distractions
  • Experiment vs. Simulation, Part 4: Compact Thermal Models
  • February 2013
  • Experiment vs. Simulation, Part 3: JESD51-14
  • January 2013
  • Experiment vs. Simulation, Part 2: TIM Thermal Conductivity
  • Experiment vs. Simulation, Part 1: Them and Us.
  • September 2012
  • “Why Cartesian Grids Are Good”
  • August 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 5: Get a Job
  • Where’s the Best Place to Put a Radiator in a Room? Part 4: Premature Simulation
  • July 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 3: 13% Better
  • Where’s the Best Place to Put a Radiator in a Room? Part 2: PMV and other TLAs
  • Where’s the Best Place to Put a Radiator in a Room. Part 1: Such Things are Important
  • May 2012
  • Agile software development practices in the Mechanical Analysis Division
  • A Little Goes A Long Way (But A Lot Doesn’t Go Much Further)
  • April 2012
  • More Than Two Decades and Still Going Strong; FloTHERM and FloVENT V9.3 Now Released
  • Simulation Software So Simple Even Teenagers Can Use It
  • February 2012
  • Bottlenecks and Interface Materials; Part 3 – Relieving Thermal Bottlenecks Reduce Temperatures
  • January 2012
  • Bottlenecks and Interface Materials; Part 2 – When TIMs Go Bad
  • Bridging the Simulation Supply Chain; NXP Semiconductors, a Case in Point
  • Bottlenecks and Interface Materials; Part 1 – Great Thermal Bedfellows
  • Emails, more Emails and Jeff Bridges
  • LEDs; The future’s bright and hot.
  • December 2011
  • From Megawatts to Milliwatts; sub-micron scale thermal modelling with FloTHERM
  • November 2011
  • What! All that just for that? The bonkers world of CPU cooling.
  • October 2011
  • Ho, Ho, Ho! Facebook moves to Lapland
  • All Detailed Thermal IC Package Models are Wrong… Probably
  • Underfloor Electric Heating. Part III – Penny wise, pound foolish.
  • August 2011
  • Underfloor Electric Heating. Part II – Infrared Thermography
  • Underfloor Electric Heating. Part I: In by Christmas
  • June 2011
  • Come, meet FloTHERM/VENT/EFD users, learn and enjoy!
  • PC Overclocking and Aftermarket Modding. Part III – Power vs. Frequency?
  • PC Overclocking and Aftermarket Modding. Part II – Liquid Nitrogen Overclocking, How Cool is That?
  • May 2011
  • PC Overclocking and Aftermarket Modding. Part 1 – When Colour Matters.
  • April 2011
  • Desktop PC with Integrated Toaster – As if!
  • Thermal Design Perfection Starts with the use of FloTHERM PACK
  • We Love FloTHERM V9.2
  • Desktop PC with Integrated Toaster – the Future is Now
  • March 2011
  • Do you know the way to San Jose?
  • February 2011
  • Beer Fridge – A Case Study in Thermal Design. Part 6 – Baffles and Bottlenecks
  • January 2011
  • FloEFD HVAC Module – Taking Built Environment CFD Simulation to the Next Level
  • Beer Fridge – A Case Study in Thermal Design. Part 5 – Time for a FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 4 – FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 3 – Side Up or Upside Down?
  • December 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 2 – TEC Effect
  • November 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 1 – A Gift
  • What Can You Learn When You Turn It On?
  • We Love FloTHERM – 8 Reasons to Upgrade to V9.1
  • October 2010
  • On the Vilification of Smokers
  • Identifying Thermal Bottlenecks and Shortcut Opportunities – Taking Simulation to the Next Level
  • August 2010
  • How many frogs does a horse have?
  • It’s a wireless world! No it isn’t.
  • July 2010
  • Are you using ‘Smart’ in a way I am not familiar with?
  • An Interview With… Clemens Lasance
  • I was led to believe we’d have flying cars by now
  • Red Hot Electronic Thermal Analysis?
  • June 2010
  • The art of modelling using CFD. Part VI – Peripheral Boundary Conditions
  • The art of modelling using CFD. Part V – Grid
  • May 2010
  • The art of modelling using CFD. Part IV – Fans
  • The art of modelling using CFD. Part III – TIGs
  • The art of modelling using CFD. Part II – Grilles
  • The art of modelling using CFD. Part I – What happens if you cross art with science?
  • April 2010
  • How much do ‘U-Value’ good thermal insulation? Part VII – “Ooo, shut that door”
  • “A Faster Horse” – Mentor ‘IDEAS for Mechanical’ driving product development
  • March 2010
  • How much do ‘U-Value’ good thermal insulation? Part VI – revenge of the radiative heat flux
  • IC package representation is central to Electronics Cooling
  • How much do ‘U-Value’ good thermal insulation? Part V
  • February 2010
  • How much do ‘U-Value’ good thermal insulation? Part IV
  • How much do ‘U-Value’ good thermal insulation? Part III
  • How much do ‘U-Value’ good thermal insulation? Part II
  • January 2010
  • How much do ‘U-Value’ good thermal insulation? Part I
  • Keeping the caveman warm – HVAC blog
  • FloVIZ, the free FloTHERM/FloVENT CFD results viewer, try it, it’s free
  • ‘Heat Trees’ – taking a leaf out of natures book
  • The Most Extreme CFD Model Ever Ever – Explained
  • FloTHERM and its new XML neutral file format
  • The Most Extreme CFD Model Ever Ever
  • So, you want to predict component temperatures do you? Part VII
  • December 2009
  • So, you want to predict component temperatures do you? Part VI
  • So, you want to predict component temperatures do you? Part V
  • November 2009
  • A trip to MPH and Top Gear Live
  • So, you want to predict component temperatures do you? Part IV
  • So, you want to predict component temperatures do you? Part III
  • October 2009
  • So, you want to predict component temperatures do you? Part II
  • So, you want to predict component temperatures do you? Part I
  • Underfloor Thermal Insulation; Why? Part III
  • September 2009
  • Underfloor Thermal Insulation; Why? Part II
  • Underfloor Thermal Insulation; Why? Part I
  • Is all Software Rubbish?
  • August 2009
  • Thermatronic Stagnation (nothing to do with male deers)
  • Fractals: Gods Artwork, Part III
  • Thermatrons Must Leave
  • July 2009
  • At the Speed of Heat
  • A Load of HVAC TLAs
  • How-to: Invert your thermal model to good effect
  • Clogged cooling fins, a cautionary tale
  • Invert your thermal model to good effect
  • “I work with computers”
  • Fractals: Gods Artwork, Part II
  • Fractals: Gods Artwork, Part I
  • “All models are wrong, but some are useful” Part V
  • June 2009
  • 3D Electronics Cooling CFD, with FloTHERM, in Pictures
  • Spend some time with FlyGuy
  • “All models are wrong, but some are useful” Part IV
  • Flying
  • “All models are wrong, but some are useful” Part III
  • May 2009
  • “All models are wrong, but some are useful” Part II
  • “All models are wrong, but some are useful” Part I
  • Welcome along!