The art of modelling using CFD. Part VI – Peripheral Boundary Conditions

This final blog in this series focuses on what is sometimes the most ethereal of CFD modelling arts, where and how to define your peripheral boundary conditions. A fancy phrase but in reality no more than deciding where the interface is between what you model and what you don’t. Heat is contemptuous of such divisions, it will spread out from it’s source and keep on spreading via convection, conduction and radiation until it heats up (albeit only slightly) the earth’s atmosphere. From a pragmatic perspective you can’t model the entire earth just to find an active IC’s junction temperature. You have to truncate your model somewhere and somehow.

The term ‘boundary condition’ is well used and understood when one talks of solving PDEs (partial differential equations). When applied to a 3D solution of the PDEs governing fluid flow and heat transfer (the Navier Stokes equations) the term historically applied to the outer edges of the computational domain, the volume of space in which you predicted the fluid flow. The earliest CFD models had an uninterrupted volume of fluid with solid, or well defined flow, conditions on the peripheral faces of that volume. Today, boundary condition (BC) as a phrase is used to describe a much wider range of inputs to a model, e.g. power dissipations, internal geometries etc. For now let’s use the word peripheral to focus on just those conditions that cement the interface between the volume of space you are modelling and the volume of space that you are not.

“Words offer the means to meaning” (good film, 5 fictional credits to the first person to comment as to which film, if you Google it you’re just cheating yourself, that’s what I tell my kids anyway). ‘Level’ is another word that is often used to define the type of electronics cooling simulation performed (and other types simulations as well, word re-use here can have some disastrous effects, what a thermal engineer considers a system level model really isn’t what an EE would consider). From a thermal perspective:

  • Wafer level, what goes on in a silicon die
  • Package level, what goes on in the packaging arond the die
  • Board level, considering many components sitting on a board
  • System level, the PCB(s) + chassis/box + fans + PSUs …
  • Room level, considering the product operating in its final destination as in a Data Center

If you are doing simulation at any level you have to define peripheral BCs that link it to the level(s) above. Heat and fluid need to know how they enter or leave the model from or to that which you are not modelling.

Take a wafer level simulation. You are modelling a die in detail, maybe a series of stacked die to determine optimal placement fo TSVs. How do you represent the thermal effects that the unmodelled package has on the behaviour of heat in the silicon?  Whether the package has a heat slug, whether the die abuts a DAP, whether there will be a heatsink on the package, all these things will affect the thermal behaviour within the die, all these conditions outside your model will have to be prescribed on the periphery of your wafer level model. For such conduction type models you would set temperatures and heat transfer coefficients on the sides of your silicon. Temperature is just that, heat transfer coefficient is a measure of how effectively heat can pass through that peripheral portion of your model. The two together prescribe the effects of the package.

Such decisions, such prescriptions, have to be made at any level of modelling. For board level you need to define how the air moves over the board. For a system level you have to set the temperature of the air coming into your box. This all begs the question where do you get such information from?

Answer 1: set these BCs based on ‘worst case’ operating environments. Doing this will enable you to verify if your package, board, room etc. will be thermally viable in the extreme

Answer 2: import such BCs from existing models of the adjacent levels. FloTHERM excels at this with a feature called ‘zoom-in':

 zoom-in

e.g. getting actual operating conditions from a system level model to impose them on a board level model. Zoom-in again from board level down to package level. Such automation leads to far more accurate simulation at any level at literally a press of a button (sorry, rather selection from a pop-up menu).

globeComputational limitations and data availability have and will always continue to limit the option of combining levels together. I’m not envisioning that the world model will ever be a reality but there are methods to alleviate the computational overhead of say having detailed models of packages sitting inside a system level model. FloTHERM’s ‘localized grid’ capability started making that a reality nearly a decade ago:

localized_grid

Combining adjacent levels into a single model alleviates the time and effort needed to pass BCs around using zoom-in (and zoom-out). Gathering all the required information together into a single model is just as challenging though. In the glorious future all vendors will supply numerical thermal models of all of their parts, model building in CAD and CAE will be simply be a question of drag+drop, plug and play. Until that time features that improve the effectiveness of the setting of peripheral BCs will aid in the art of this aspect of CFD modelling.

21st June 2010, Ross-on-Wye

Post Author

Posted June 21st, 2010, by

Post Tags

, , , , , , ,

Post Comments

1 Comment

About Robin Bornoff's blog

Views and insights into the concepts behind electronics cooling with a specific focus on the application of FloTHERM to the thermal simulation of electronic systems. Investigations into the application of FloVENT to HVAC simulation. Plus the odd foray into CFD, non-linear dynamic systems and cider making. Robin Bornoff's blog

Comments

One comment on this post | ↓ Add Your Own

[…] (BC), an apt phrase if ever there was one. From an electronics cooling perspective there are well defined levels where such BCs can be readily imposed. The same is true from an HVAC perspective, one of the best […]

Add Your Comment

Archives

September 2014
  • Xilinx Patent for Critical Tj Prediction
  • Dell Precision – Spot on Thermal Design
  • Top 10 FloTHERM V10 Features – #11: Odds and Sods
  • Top 10 FloTHERM V10 Features – #10: Improved Solar Calculator
  • Top 10 FloTHERM V10 Features – #9: Data Center Simulation
  • August 2014
  • Top 10 FloTHERM V10 Features – #8: Thermostatic Control with Hysteresis
  • July 2014
  • Top 10 FloTHERM V10 Features – #7: Super-fast Parallel CFD Solver
  • June 2014
  • Top 10 FloTHERM V10 Features – #6: Integrated Summary Columns
  • Top 10 FloTHERM V10 Features – #5: FloSCRIPT
  • Top 10 FloTHERM V10 Features – #4: Updated CAD
  • Top 10 FloTHERM V10 Features – #3: FEA Interfacing
  • February 2014
  • Top 10 FloTHERM V10 Features – #2: Advanced Find
  • Top 10 FloTHERM V10 Features – #1: New GUI
  • January 2014
  • Come and Learn about the Latest Release of FloTHERM, V10
  • Heat Your Home Office for 8p a Day. Part 5 – Putting it All Together
  • December 2013
  • Heat Your Home Office for 8p a Day. Part 4 – Comfort Temperature
  • Heat Your Home Office for 8p a Day. Part 3a – Was Dave Right?
  • November 2013
  • Heat Your Home Office for 8p a Day. Part 3 – It Takes Time
  • Heat Your Home Office for 8p a Day. Part 2 – Thermal Interception
  • Heat Your Home Office for 8p a Day. Part 1 – Really?
  • Happy 25th Birthday FloTHERM !
  • July 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 3: Pads, Vias and Undersinking
  • May 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 2: Heat Flow Budgets
  • Why Not Just Shove a Heatsink on Top of it? Part 1
  • April 2013
  • Experiment vs. Simulation, Part 5: Detailed IC Package Model Calibration Methodology
  • CFD – Colourful Friday Distractions
  • Experiment vs. Simulation, Part 4: Compact Thermal Models
  • February 2013
  • Experiment vs. Simulation, Part 3: JESD51-14
  • January 2013
  • Experiment vs. Simulation, Part 2: TIM Thermal Conductivity
  • Experiment vs. Simulation, Part 1: Them and Us.
  • September 2012
  • “Why Cartesian Grids Are Good”
  • August 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 5: Get a Job
  • Where’s the Best Place to Put a Radiator in a Room? Part 4: Premature Simulation
  • July 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 3: 13% Better
  • Where’s the Best Place to Put a Radiator in a Room? Part 2: PMV and other TLAs
  • Where’s the Best Place to Put a Radiator in a Room. Part 1: Such Things are Important
  • May 2012
  • Agile software development practices in the Mechanical Analysis Division
  • A Little Goes A Long Way (But A Lot Doesn’t Go Much Further)
  • April 2012
  • More Than Two Decades and Still Going Strong; FloTHERM and FloVENT V9.3 Now Released
  • Simulation Software So Simple Even Teenagers Can Use It
  • February 2012
  • Bottlenecks and Interface Materials; Part 3 – Relieving Thermal Bottlenecks Reduce Temperatures
  • January 2012
  • Bottlenecks and Interface Materials; Part 2 – When TIMs Go Bad
  • Bridging the Simulation Supply Chain; NXP Semiconductors, a Case in Point
  • Bottlenecks and Interface Materials; Part 1 – Great Thermal Bedfellows
  • Emails, more Emails and Jeff Bridges
  • LEDs; The future’s bright and hot.
  • December 2011
  • From Megawatts to Milliwatts; sub-micron scale thermal modelling with FloTHERM
  • November 2011
  • What! All that just for that? The bonkers world of CPU cooling.
  • October 2011
  • Ho, Ho, Ho! Facebook moves to Lapland
  • All Detailed Thermal IC Package Models are Wrong… Probably
  • Underfloor Electric Heating. Part III – Penny wise, pound foolish.
  • August 2011
  • Underfloor Electric Heating. Part II – Infrared Thermography
  • Underfloor Electric Heating. Part I: In by Christmas
  • June 2011
  • Come, meet FloTHERM/VENT/EFD users, learn and enjoy!
  • PC Overclocking and Aftermarket Modding. Part III – Power vs. Frequency?
  • PC Overclocking and Aftermarket Modding. Part II – Liquid Nitrogen Overclocking, How Cool is That?
  • May 2011
  • PC Overclocking and Aftermarket Modding. Part 1 – When Colour Matters.
  • April 2011
  • Desktop PC with Integrated Toaster – As if!
  • Thermal Design Perfection Starts with the use of FloTHERM PACK
  • We Love FloTHERM V9.2
  • Desktop PC with Integrated Toaster – the Future is Now
  • March 2011
  • Do you know the way to San Jose?
  • February 2011
  • Beer Fridge – A Case Study in Thermal Design. Part 6 – Baffles and Bottlenecks
  • January 2011
  • FloEFD HVAC Module – Taking Built Environment CFD Simulation to the Next Level
  • Beer Fridge – A Case Study in Thermal Design. Part 5 – Time for a FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 4 – FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 3 – Side Up or Upside Down?
  • December 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 2 – TEC Effect
  • November 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 1 – A Gift
  • What Can You Learn When You Turn It On?
  • We Love FloTHERM – 8 Reasons to Upgrade to V9.1
  • October 2010
  • On the Vilification of Smokers
  • Identifying Thermal Bottlenecks and Shortcut Opportunities – Taking Simulation to the Next Level
  • August 2010
  • How many frogs does a horse have?
  • It’s a wireless world! No it isn’t.
  • July 2010
  • Are you using ‘Smart’ in a way I am not familiar with?
  • An Interview With… Clemens Lasance
  • I was led to believe we’d have flying cars by now
  • Red Hot Electronic Thermal Analysis?
  • June 2010
  • The art of modelling using CFD. Part VI – Peripheral Boundary Conditions
  • The art of modelling using CFD. Part V – Grid
  • May 2010
  • The art of modelling using CFD. Part IV – Fans
  • The art of modelling using CFD. Part III – TIGs
  • The art of modelling using CFD. Part II – Grilles
  • The art of modelling using CFD. Part I – What happens if you cross art with science?
  • April 2010
  • How much do ‘U-Value’ good thermal insulation? Part VII – “Ooo, shut that door”
  • “A Faster Horse” – Mentor ‘IDEAS for Mechanical’ driving product development
  • March 2010
  • How much do ‘U-Value’ good thermal insulation? Part VI – revenge of the radiative heat flux
  • IC package representation is central to Electronics Cooling
  • How much do ‘U-Value’ good thermal insulation? Part V
  • February 2010
  • How much do ‘U-Value’ good thermal insulation? Part IV
  • How much do ‘U-Value’ good thermal insulation? Part III
  • How much do ‘U-Value’ good thermal insulation? Part II
  • January 2010
  • How much do ‘U-Value’ good thermal insulation? Part I
  • Keeping the caveman warm – HVAC blog
  • FloVIZ, the free FloTHERM/FloVENT CFD results viewer, try it, it’s free
  • ‘Heat Trees’ – taking a leaf out of natures book
  • The Most Extreme CFD Model Ever Ever – Explained
  • FloTHERM and its new XML neutral file format
  • The Most Extreme CFD Model Ever Ever
  • So, you want to predict component temperatures do you? Part VII
  • December 2009
  • So, you want to predict component temperatures do you? Part VI
  • So, you want to predict component temperatures do you? Part V
  • November 2009
  • A trip to MPH and Top Gear Live
  • So, you want to predict component temperatures do you? Part IV
  • So, you want to predict component temperatures do you? Part III
  • October 2009
  • So, you want to predict component temperatures do you? Part II
  • So, you want to predict component temperatures do you? Part I
  • Underfloor Thermal Insulation; Why? Part III
  • September 2009
  • Underfloor Thermal Insulation; Why? Part II
  • Underfloor Thermal Insulation; Why? Part I
  • Is all Software Rubbish?
  • August 2009
  • Thermatronic Stagnation (nothing to do with male deers)
  • Fractals: Gods Artwork, Part III
  • Thermatrons Must Leave
  • July 2009
  • At the Speed of Heat
  • A Load of HVAC TLAs
  • How-to: Invert your thermal model to good effect
  • Clogged cooling fins, a cautionary tale
  • Invert your thermal model to good effect
  • “I work with computers”
  • Fractals: Gods Artwork, Part II
  • Fractals: Gods Artwork, Part I
  • “All models are wrong, but some are useful” Part V
  • June 2009
  • 3D Electronics Cooling CFD, with FloTHERM, in Pictures
  • Spend some time with FlyGuy
  • “All models are wrong, but some are useful” Part IV
  • Flying
  • “All models are wrong, but some are useful” Part III
  • May 2009
  • “All models are wrong, but some are useful” Part II
  • “All models are wrong, but some are useful” Part I
  • Welcome along!