3D Electronics Cooling CFD, with FloTHERM, in Pictures

“A picture paints a thousand words”. Probably not as quickly though. Wouldn’t the world be a different place if we had evolved the ability to communicate via richly contented drawings? Likely we’d have more fingers, smaller ears and would war less due to less frequent communication misunderstandings. FloTHERM’s CFD simulation technology creates a wealth of data that reflects what happens in and around electronic equipment. Its ability to output compelling graphical representations of air flow and temperature distributions enables complex thermal engineering conclusions to be presented to, and accepted by, the entire design team.

My eldest son asked me when he was young;

“Dad, what’s this FloTHERM thing you always go on about?”

I launched into a verbal description of electronics design, CFD, thermally related package failure mechanisms only to be met with a completely blank gaze that only a 5 year old can muster. 4 kids later I’ve learnt to field such questions by showing them pictures.

pcb“Cool! So the red colour means hot?”

“Yep, and if it gets too hot it breaks”

“Like my walkie-talky did?”

“No, that broke because you threw it”

(Let’s not get into why he threw it, I might be made aware of the fact that not all kids have tantrums like mine, for now I live in blissful ignorance).

handheldIn FloTHERM you create a 3D geometric representation of your electronic system, either manually using our unique SmartPart building blocks and/or by importing existing data from MCAD and EDA tools. You then add extra data like power dissipation of your actives, flow rate data for your fans, define what objects are made out of what material etc. Define some grid (points at which you will get a prediction of temperature, pressure, air speed etc.). Press the GO button, wait a while, then get to inspect and interact with the results.

You can pan,  zoom, rotate in 3D. Pick what is to be coloured by temperature, define where ‘particles’ are to be released from (like a numerical smoke test), export a static graphics image or a nice avi animation.

rack_detailed_comp

FloTHERM’s general in that just about any scale can be modelled. From a die level ‘conduction only’ model, through to a package model, heat sink optimisation, populated PCB, sub-rack, cabinet all the way up to a data center. Often the thermal issue is apparent only at one of these scales and so only that scale is modelled with assumptions about how the wider environment that it’s placed in, behaves. To minimize errors associated with such an assumption, multiple scales can be represented in a single model (I’ll conclude the ‘All models are wrong, but some are useful’ series with this issue soon).

blower

To make the graphical representation even more compelling texture mapping can be used to, well, texture objects with images that better represent what the object is. ‘Wood effect’ is one, I like it, I seem to be the only one though.

settop

All of this is done in FloTHERM’s ‘post processing’ window, the Visual Editor. There’s a free unlicensed version of it available, this free viewer is called FloVIZ. Download it today from SupportNet, spread the word!

Despite all these pretty pictures, more often than not the motivation for using FloTHERM in the first place can be satisfied by extracting very little information. Despite the millions of numerical thermocouple type points (grid cells), the megabytes of memory used to perform the simulation, more often than not all you’ll be after is a single numerical value.

X degC

Where X shouldn’t be too high, or too low (if you want to save $$s).

22nd June, Hampton court

Post Author

Posted June 22nd, 2009, by

Post Tags

, ,

Post Comments

4 Comments

About Robin Bornoff's blog

Views and insights into the concepts behind electronics cooling with a specific focus on the application of FloTHERM to the thermal simulation of electronic systems. Investigations into the application of FloVENT to HVAC simulation. Plus the odd foray into CFD, non-linear dynamic systems and cider making. Robin Bornoff's blog

Comments

4 comments on this post | ↓ Add Your Own

Commented on July 5, 2009 at 7:47 am
By Dr.-Eng. HEGAB

DEAR TEAM,
pleae i wish the email of: Robin Bornoff .
Robin Bornoff achieved a Mechanical Engineering Degree from Brunel University in 1992 followed by a PhD in 1995 for CFD research

Commented on July 5, 2009 at 10:58 pm
By Robin Bornoff

Sure, my email address is: robin_bornoff at mentor.com

[...] using a 3D CFD approach adopted in our (as ever) market leading FloTHERM and FloTHERM.PCB products. 3D CFD is not bound by many assumptions, it’s quite computationally intensive, providing a [...]

[...] is a link to the .pack file (10MB) of the double inlet/outlet microblower model used in the “3D Electronics Cooling CFD, with FloTHERM, in Pictures” blog [...]

Add Your Comment

Archives

September 2014
  • Xilinx Patent for Critical Tj Prediction
  • Dell Precision – Spot on Thermal Design
  • Top 10 FloTHERM V10 Features – #11: Odds and Sods
  • Top 10 FloTHERM V10 Features – #10: Improved Solar Calculator
  • Top 10 FloTHERM V10 Features – #9: Data Center Simulation
  • August 2014
  • Top 10 FloTHERM V10 Features – #8: Thermostatic Control with Hysteresis
  • July 2014
  • Top 10 FloTHERM V10 Features – #7: Super-fast Parallel CFD Solver
  • June 2014
  • Top 10 FloTHERM V10 Features – #6: Integrated Summary Columns
  • Top 10 FloTHERM V10 Features – #5: FloSCRIPT
  • Top 10 FloTHERM V10 Features – #4: Updated CAD
  • Top 10 FloTHERM V10 Features – #3: FEA Interfacing
  • February 2014
  • Top 10 FloTHERM V10 Features – #2: Advanced Find
  • Top 10 FloTHERM V10 Features – #1: New GUI
  • January 2014
  • Come and Learn about the Latest Release of FloTHERM, V10
  • Heat Your Home Office for 8p a Day. Part 5 – Putting it All Together
  • December 2013
  • Heat Your Home Office for 8p a Day. Part 4 – Comfort Temperature
  • Heat Your Home Office for 8p a Day. Part 3a – Was Dave Right?
  • November 2013
  • Heat Your Home Office for 8p a Day. Part 3 – It Takes Time
  • Heat Your Home Office for 8p a Day. Part 2 – Thermal Interception
  • Heat Your Home Office for 8p a Day. Part 1 – Really?
  • Happy 25th Birthday FloTHERM !
  • July 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 3: Pads, Vias and Undersinking
  • May 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 2: Heat Flow Budgets
  • Why Not Just Shove a Heatsink on Top of it? Part 1
  • April 2013
  • Experiment vs. Simulation, Part 5: Detailed IC Package Model Calibration Methodology
  • CFD – Colourful Friday Distractions
  • Experiment vs. Simulation, Part 4: Compact Thermal Models
  • February 2013
  • Experiment vs. Simulation, Part 3: JESD51-14
  • January 2013
  • Experiment vs. Simulation, Part 2: TIM Thermal Conductivity
  • Experiment vs. Simulation, Part 1: Them and Us.
  • September 2012
  • “Why Cartesian Grids Are Good”
  • August 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 5: Get a Job
  • Where’s the Best Place to Put a Radiator in a Room? Part 4: Premature Simulation
  • July 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 3: 13% Better
  • Where’s the Best Place to Put a Radiator in a Room? Part 2: PMV and other TLAs
  • Where’s the Best Place to Put a Radiator in a Room. Part 1: Such Things are Important
  • May 2012
  • Agile software development practices in the Mechanical Analysis Division
  • A Little Goes A Long Way (But A Lot Doesn’t Go Much Further)
  • April 2012
  • More Than Two Decades and Still Going Strong; FloTHERM and FloVENT V9.3 Now Released
  • Simulation Software So Simple Even Teenagers Can Use It
  • February 2012
  • Bottlenecks and Interface Materials; Part 3 – Relieving Thermal Bottlenecks Reduce Temperatures
  • January 2012
  • Bottlenecks and Interface Materials; Part 2 – When TIMs Go Bad
  • Bridging the Simulation Supply Chain; NXP Semiconductors, a Case in Point
  • Bottlenecks and Interface Materials; Part 1 – Great Thermal Bedfellows
  • Emails, more Emails and Jeff Bridges
  • LEDs; The future’s bright and hot.
  • December 2011
  • From Megawatts to Milliwatts; sub-micron scale thermal modelling with FloTHERM
  • November 2011
  • What! All that just for that? The bonkers world of CPU cooling.
  • October 2011
  • Ho, Ho, Ho! Facebook moves to Lapland
  • All Detailed Thermal IC Package Models are Wrong… Probably
  • Underfloor Electric Heating. Part III – Penny wise, pound foolish.
  • August 2011
  • Underfloor Electric Heating. Part II – Infrared Thermography
  • Underfloor Electric Heating. Part I: In by Christmas
  • June 2011
  • Come, meet FloTHERM/VENT/EFD users, learn and enjoy!
  • PC Overclocking and Aftermarket Modding. Part III – Power vs. Frequency?
  • PC Overclocking and Aftermarket Modding. Part II – Liquid Nitrogen Overclocking, How Cool is That?
  • May 2011
  • PC Overclocking and Aftermarket Modding. Part 1 – When Colour Matters.
  • April 2011
  • Desktop PC with Integrated Toaster – As if!
  • Thermal Design Perfection Starts with the use of FloTHERM PACK
  • We Love FloTHERM V9.2
  • Desktop PC with Integrated Toaster – the Future is Now
  • March 2011
  • Do you know the way to San Jose?
  • February 2011
  • Beer Fridge – A Case Study in Thermal Design. Part 6 – Baffles and Bottlenecks
  • January 2011
  • FloEFD HVAC Module – Taking Built Environment CFD Simulation to the Next Level
  • Beer Fridge – A Case Study in Thermal Design. Part 5 – Time for a FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 4 – FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 3 – Side Up or Upside Down?
  • December 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 2 – TEC Effect
  • November 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 1 – A Gift
  • What Can You Learn When You Turn It On?
  • We Love FloTHERM – 8 Reasons to Upgrade to V9.1
  • October 2010
  • On the Vilification of Smokers
  • Identifying Thermal Bottlenecks and Shortcut Opportunities – Taking Simulation to the Next Level
  • August 2010
  • How many frogs does a horse have?
  • It’s a wireless world! No it isn’t.
  • July 2010
  • Are you using ‘Smart’ in a way I am not familiar with?
  • An Interview With… Clemens Lasance
  • I was led to believe we’d have flying cars by now
  • Red Hot Electronic Thermal Analysis?
  • June 2010
  • The art of modelling using CFD. Part VI – Peripheral Boundary Conditions
  • The art of modelling using CFD. Part V – Grid
  • May 2010
  • The art of modelling using CFD. Part IV – Fans
  • The art of modelling using CFD. Part III – TIGs
  • The art of modelling using CFD. Part II – Grilles
  • The art of modelling using CFD. Part I – What happens if you cross art with science?
  • April 2010
  • How much do ‘U-Value’ good thermal insulation? Part VII – “Ooo, shut that door”
  • “A Faster Horse” – Mentor ‘IDEAS for Mechanical’ driving product development
  • March 2010
  • How much do ‘U-Value’ good thermal insulation? Part VI – revenge of the radiative heat flux
  • IC package representation is central to Electronics Cooling
  • How much do ‘U-Value’ good thermal insulation? Part V
  • February 2010
  • How much do ‘U-Value’ good thermal insulation? Part IV
  • How much do ‘U-Value’ good thermal insulation? Part III
  • How much do ‘U-Value’ good thermal insulation? Part II
  • January 2010
  • How much do ‘U-Value’ good thermal insulation? Part I
  • Keeping the caveman warm – HVAC blog
  • FloVIZ, the free FloTHERM/FloVENT CFD results viewer, try it, it’s free
  • ‘Heat Trees’ – taking a leaf out of natures book
  • The Most Extreme CFD Model Ever Ever – Explained
  • FloTHERM and its new XML neutral file format
  • The Most Extreme CFD Model Ever Ever
  • So, you want to predict component temperatures do you? Part VII
  • December 2009
  • So, you want to predict component temperatures do you? Part VI
  • So, you want to predict component temperatures do you? Part V
  • November 2009
  • A trip to MPH and Top Gear Live
  • So, you want to predict component temperatures do you? Part IV
  • So, you want to predict component temperatures do you? Part III
  • October 2009
  • So, you want to predict component temperatures do you? Part II
  • So, you want to predict component temperatures do you? Part I
  • Underfloor Thermal Insulation; Why? Part III
  • September 2009
  • Underfloor Thermal Insulation; Why? Part II
  • Underfloor Thermal Insulation; Why? Part I
  • Is all Software Rubbish?
  • August 2009
  • Thermatronic Stagnation (nothing to do with male deers)
  • Fractals: Gods Artwork, Part III
  • Thermatrons Must Leave
  • July 2009
  • At the Speed of Heat
  • A Load of HVAC TLAs
  • How-to: Invert your thermal model to good effect
  • Clogged cooling fins, a cautionary tale
  • Invert your thermal model to good effect
  • “I work with computers”
  • Fractals: Gods Artwork, Part II
  • Fractals: Gods Artwork, Part I
  • “All models are wrong, but some are useful” Part V
  • June 2009
  • 3D Electronics Cooling CFD, with FloTHERM, in Pictures
  • Spend some time with FlyGuy
  • “All models are wrong, but some are useful” Part IV
  • Flying
  • “All models are wrong, but some are useful” Part III
  • May 2009
  • “All models are wrong, but some are useful” Part II
  • “All models are wrong, but some are useful” Part I
  • Welcome along!