“All models are wrong, but some are useful” Part III

The next two parts in this series focus on the thermal model representations of electronic objects. The first being packages, or should that be components, or chips? From a mechanical analysis perspective they’re the things that are plonked onto a PCB that get hot. These things do clever electrical stuff, or should that be electronic stuff? If you haven’t already guessed I’m a mechanical engineer with a penchant for fluid and thermal effects, apologies for my somewhat uneducated use of electronical terminology ;)

Either way, from the heat’s perspective the package is just the first stage in a series of resistances it experiences as it makes it way to the ambient (conversely it’s the last barrier the cold has to go through before it can quench the heat source). Under such conditions the heat flux is very high (this is the area into which the heat has to squeeze out (W/m^2)) and so any resistance the heat experiences will have a disproportionate effect on the source (junction) temperature. So, getting these thermal resistance right is key. When modelling a package there are two ways in which you can represent these resistances.

‘Detailed’ models

Such models contain explicit 3D representations of the internal construction of a package. A 3D object representing the die, with the correct material properties, with the power being set to dissipate on its surface. All the other important internal objects such as die attach, bond wires or leadframe, encapsulant etc. with their material properties. Very few assumptions about the thermal resistances are therefore made and thus the resulting accuracy is as good as you can achieve.

detailed

OK, so why are such package models rarely used? Not through want of trying that’s for sure. It comes down to the fact that component suppliers are unwilling to divulge what is seen as proprietary information regarding their package. What, like small minor design issues? No, whopping big ones like die size.

We provide a tool called FloTHERM.PACK (formerly Flopack) that has the ability to create thermal models of packages which are parametrically specified. The following is part of the design sheet for a TBGA:

flopack

Once parametrically specified a detailed model can be downloaded and used in FloTHERM or FloTHERM.PCB to conduct the actual thermal simulation. If things like die size are not known then sensible defaults are assumed based on the experience we have of the more common package constructions.

Some assumptions, or rather simplifications, are made for the detailed package model. Grid count can be minimized by representing all solder balls as a single lump of homogeneous material with a thermal conductivity representative of the fact that there is both air and solder in that volume of space (a common trick used often for lots of electronics thermal models).

Thermal Resistor Network

A thermal resistor network (sometimes referred to as a CTM (compact thermal model)) is the alternative method of package representation.

“As if CFD based electronics thermal simulation wasn’t involved enough. Why do you guys go and complicate things with lots of options and methods? Jeesh.”

The main advantage of a CTM is that such a description does not give away any proprietary information. It is ‘compact’ in that it’s a very simple representation but still ‘behaves’ (thermally) like the real thing. It is a bit abstract though in terms of getting your head round the concept…..

The inside of the package is represented as a collection of thermal resistances (degC/W) that link abstract points (nodes) up together. The topology of the network of resistances (how many nodes there are and how they are connected) is intended to represent the dominant heat flow paths the heat follows as it leaves the package. There will be internal nodes, e.g. one that represents the junction and peripheral nodes, e.g. one that represents the top of the package, one that represents the bottom etc. With the power dissipation value assigned to the junction node a clever program like FloTHERM or FloTHERM.PCB can solve this network to find out how much of the heat flows through the resistances and what the temperature values are at the nodes. All without requiring die size or any other explicit physical property of the package. Suppliers are happy, thermal engineers are happy. Everyone hug.

“Hey, hold on, everyone knows you don’t get something for nothing, what’s the catch with these CTM thingamajigs?”

Not surprisingly it’s accuracy. The CTM should behave the same as the detailed model regardless of what environment they are placed in. In reality if a great big heatsink is placed onto a package the heat removal paths will be different compared to when that same package is put on a board that is wedgelocked into a sealed enclosure where the heat is designed to be sucked down out through the board. It can well be that the resistor topology does not account for the (surprisingly) wide variations in heat removal paths. It may not be Boundary Condition Independent (BCI). A good CTM will be BCI. I won’t go into detail here about various ways in which a CTM can be derived. JEDEC have just issued some relevant guidelines for both DELPHI and 2-resistor CTM types if you want to read more.

2r_delphiBlock models and no model at all models

Both detailed and CTM models are capable of predicting junction and case temperatures thus providing the ability to judge thermal compliance. But what, if like the most of the real world, you can’t find any such models? The best you’ll be able to do is to model your package as a single block with a single thermal conductivity and assume the power is dissipated throughout that volume.

“Wow,  sounds much easier. All I need is the footprint size, height and thermal conductivity…. Hey hold on, you nearly had me there again, so what’s the catch!?”

Well, knowing what thermal conductivity value to use that best represents the package as a whole aint easy. Somewhere between 0.5 and 10 W/mK. Buy FloTHERM or FloTHERM.PCB, we’ve supplied a whole bunch of values based on package style. Even then due to non-BCI behaviour accuracy will not be perfect (but then again, that’s the whole point of this series…).

The final component modelling ‘level’ is ‘no model at all’. For small passive surface mounts capacitors, resistors and the like they are so thermally passive that they will not effect the heat around them, they will simply assume the temperature that is coming from other more thermally dominant packages near by. Often you won’t care about such passives but if you do then just ignore them for the simulation but note the board temperature where they sit in reality, that will be = case = junction temperature.

Accuracy

“For a series that’s meant to be about accuracy you’ve just made me read 1100 words and I’m still none the wiser.”

Sorry, I do have a tendency to ramble but the following summary would not have much sense without the package modelling level background. All % errors themselves should have error bars associated with them. The following is a VERY ROUGH guideline. The errors are specific to just the component model and have been learnt through experience as opposed to formal study. Based on dTj rise over ambient, compared to ‘reality':

  • Detailed ~5%
  • DELPHI ~10%
  • 2-R ~ 20%
  • Block – ~20% on case temp rise, unable to provide junction temp

These average errors should set expectations only. There are times when a 2-R model can be very accurate (for certain package styles when placed in certain environments).

Having the accuracy of a detailed model with the ease of definition, distribution and hiding of proprietary data of a CTM would be a great combination. Yep, sure would.

5th June, Ross-on-Wye

Post Author

Posted June 5th, 2009, by

Post Tags

, , ,

Post Comments

1 Comment

About Robin Bornoff's blog

Views and insights into the concepts behind electronics cooling with a specific focus on the application of FloTHERM to the thermal simulation of electronic systems. Investigations into the application of FloVENT to HVAC simulation. Plus the odd foray into CFD, non-linear dynamic systems and cider making. Robin Bornoff's blog

Comments

One comment on this post | ↓ Add Your Own

[...] other parts on the critical heat flow path, especially components. If you’re modelling your components as blocks, that inaccuracy will swamp the advantage of modelling the PCB in detail. You’re [...]

Add Your Comment

Archives

September 2014
  • Xilinx Patent for Critical Tj Prediction
  • Dell Precision – Spot on Thermal Design
  • Top 10 FloTHERM V10 Features – #11: Odds and Sods
  • Top 10 FloTHERM V10 Features – #10: Improved Solar Calculator
  • Top 10 FloTHERM V10 Features – #9: Data Center Simulation
  • August 2014
  • Top 10 FloTHERM V10 Features – #8: Thermostatic Control with Hysteresis
  • July 2014
  • Top 10 FloTHERM V10 Features – #7: Super-fast Parallel CFD Solver
  • June 2014
  • Top 10 FloTHERM V10 Features – #6: Integrated Summary Columns
  • Top 10 FloTHERM V10 Features – #5: FloSCRIPT
  • Top 10 FloTHERM V10 Features – #4: Updated CAD
  • Top 10 FloTHERM V10 Features – #3: FEA Interfacing
  • February 2014
  • Top 10 FloTHERM V10 Features – #2: Advanced Find
  • Top 10 FloTHERM V10 Features – #1: New GUI
  • January 2014
  • Come and Learn about the Latest Release of FloTHERM, V10
  • Heat Your Home Office for 8p a Day. Part 5 – Putting it All Together
  • December 2013
  • Heat Your Home Office for 8p a Day. Part 4 – Comfort Temperature
  • Heat Your Home Office for 8p a Day. Part 3a – Was Dave Right?
  • November 2013
  • Heat Your Home Office for 8p a Day. Part 3 – It Takes Time
  • Heat Your Home Office for 8p a Day. Part 2 – Thermal Interception
  • Heat Your Home Office for 8p a Day. Part 1 – Really?
  • Happy 25th Birthday FloTHERM !
  • July 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 3: Pads, Vias and Undersinking
  • May 2013
  • Why Not Just Shove a Heatsink on Top of it? Part 2: Heat Flow Budgets
  • Why Not Just Shove a Heatsink on Top of it? Part 1
  • April 2013
  • Experiment vs. Simulation, Part 5: Detailed IC Package Model Calibration Methodology
  • CFD – Colourful Friday Distractions
  • Experiment vs. Simulation, Part 4: Compact Thermal Models
  • February 2013
  • Experiment vs. Simulation, Part 3: JESD51-14
  • January 2013
  • Experiment vs. Simulation, Part 2: TIM Thermal Conductivity
  • Experiment vs. Simulation, Part 1: Them and Us.
  • September 2012
  • “Why Cartesian Grids Are Good”
  • August 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 5: Get a Job
  • Where’s the Best Place to Put a Radiator in a Room? Part 4: Premature Simulation
  • July 2012
  • Where’s the Best Place to Put a Radiator in a Room? Part 3: 13% Better
  • Where’s the Best Place to Put a Radiator in a Room? Part 2: PMV and other TLAs
  • Where’s the Best Place to Put a Radiator in a Room. Part 1: Such Things are Important
  • May 2012
  • Agile software development practices in the Mechanical Analysis Division
  • A Little Goes A Long Way (But A Lot Doesn’t Go Much Further)
  • April 2012
  • More Than Two Decades and Still Going Strong; FloTHERM and FloVENT V9.3 Now Released
  • Simulation Software So Simple Even Teenagers Can Use It
  • February 2012
  • Bottlenecks and Interface Materials; Part 3 – Relieving Thermal Bottlenecks Reduce Temperatures
  • January 2012
  • Bottlenecks and Interface Materials; Part 2 – When TIMs Go Bad
  • Bridging the Simulation Supply Chain; NXP Semiconductors, a Case in Point
  • Bottlenecks and Interface Materials; Part 1 – Great Thermal Bedfellows
  • Emails, more Emails and Jeff Bridges
  • LEDs; The future’s bright and hot.
  • December 2011
  • From Megawatts to Milliwatts; sub-micron scale thermal modelling with FloTHERM
  • November 2011
  • What! All that just for that? The bonkers world of CPU cooling.
  • October 2011
  • Ho, Ho, Ho! Facebook moves to Lapland
  • All Detailed Thermal IC Package Models are Wrong… Probably
  • Underfloor Electric Heating. Part III – Penny wise, pound foolish.
  • August 2011
  • Underfloor Electric Heating. Part II – Infrared Thermography
  • Underfloor Electric Heating. Part I: In by Christmas
  • June 2011
  • Come, meet FloTHERM/VENT/EFD users, learn and enjoy!
  • PC Overclocking and Aftermarket Modding. Part III – Power vs. Frequency?
  • PC Overclocking and Aftermarket Modding. Part II – Liquid Nitrogen Overclocking, How Cool is That?
  • May 2011
  • PC Overclocking and Aftermarket Modding. Part 1 – When Colour Matters.
  • April 2011
  • Desktop PC with Integrated Toaster – As if!
  • Thermal Design Perfection Starts with the use of FloTHERM PACK
  • We Love FloTHERM V9.2
  • Desktop PC with Integrated Toaster – the Future is Now
  • March 2011
  • Do you know the way to San Jose?
  • February 2011
  • Beer Fridge – A Case Study in Thermal Design. Part 6 – Baffles and Bottlenecks
  • January 2011
  • FloEFD HVAC Module – Taking Built Environment CFD Simulation to the Next Level
  • Beer Fridge – A Case Study in Thermal Design. Part 5 – Time for a FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 4 – FloBEER
  • Beer Fridge – A Case Study in Thermal Design. Part 3 – Side Up or Upside Down?
  • December 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 2 – TEC Effect
  • November 2010
  • Beer Fridge – A Case Study in Thermal Design. Part 1 – A Gift
  • What Can You Learn When You Turn It On?
  • We Love FloTHERM – 8 Reasons to Upgrade to V9.1
  • October 2010
  • On the Vilification of Smokers
  • Identifying Thermal Bottlenecks and Shortcut Opportunities – Taking Simulation to the Next Level
  • August 2010
  • How many frogs does a horse have?
  • It’s a wireless world! No it isn’t.
  • July 2010
  • Are you using ‘Smart’ in a way I am not familiar with?
  • An Interview With… Clemens Lasance
  • I was led to believe we’d have flying cars by now
  • Red Hot Electronic Thermal Analysis?
  • June 2010
  • The art of modelling using CFD. Part VI – Peripheral Boundary Conditions
  • The art of modelling using CFD. Part V – Grid
  • May 2010
  • The art of modelling using CFD. Part IV – Fans
  • The art of modelling using CFD. Part III – TIGs
  • The art of modelling using CFD. Part II – Grilles
  • The art of modelling using CFD. Part I – What happens if you cross art with science?
  • April 2010
  • How much do ‘U-Value’ good thermal insulation? Part VII – “Ooo, shut that door”
  • “A Faster Horse” – Mentor ‘IDEAS for Mechanical’ driving product development
  • March 2010
  • How much do ‘U-Value’ good thermal insulation? Part VI – revenge of the radiative heat flux
  • IC package representation is central to Electronics Cooling
  • How much do ‘U-Value’ good thermal insulation? Part V
  • February 2010
  • How much do ‘U-Value’ good thermal insulation? Part IV
  • How much do ‘U-Value’ good thermal insulation? Part III
  • How much do ‘U-Value’ good thermal insulation? Part II
  • January 2010
  • How much do ‘U-Value’ good thermal insulation? Part I
  • Keeping the caveman warm – HVAC blog
  • FloVIZ, the free FloTHERM/FloVENT CFD results viewer, try it, it’s free
  • ‘Heat Trees’ – taking a leaf out of natures book
  • The Most Extreme CFD Model Ever Ever – Explained
  • FloTHERM and its new XML neutral file format
  • The Most Extreme CFD Model Ever Ever
  • So, you want to predict component temperatures do you? Part VII
  • December 2009
  • So, you want to predict component temperatures do you? Part VI
  • So, you want to predict component temperatures do you? Part V
  • November 2009
  • A trip to MPH and Top Gear Live
  • So, you want to predict component temperatures do you? Part IV
  • So, you want to predict component temperatures do you? Part III
  • October 2009
  • So, you want to predict component temperatures do you? Part II
  • So, you want to predict component temperatures do you? Part I
  • Underfloor Thermal Insulation; Why? Part III
  • September 2009
  • Underfloor Thermal Insulation; Why? Part II
  • Underfloor Thermal Insulation; Why? Part I
  • Is all Software Rubbish?
  • August 2009
  • Thermatronic Stagnation (nothing to do with male deers)
  • Fractals: Gods Artwork, Part III
  • Thermatrons Must Leave
  • July 2009
  • At the Speed of Heat
  • A Load of HVAC TLAs
  • How-to: Invert your thermal model to good effect
  • Clogged cooling fins, a cautionary tale
  • Invert your thermal model to good effect
  • “I work with computers”
  • Fractals: Gods Artwork, Part II
  • Fractals: Gods Artwork, Part I
  • “All models are wrong, but some are useful” Part V
  • June 2009
  • 3D Electronics Cooling CFD, with FloTHERM, in Pictures
  • Spend some time with FlyGuy
  • “All models are wrong, but some are useful” Part IV
  • Flying
  • “All models are wrong, but some are useful” Part III
  • May 2009
  • “All models are wrong, but some are useful” Part II
  • “All models are wrong, but some are useful” Part I
  • Welcome along!