Modeling: An Engineer’s Dilemma

Many of my recent interactions with customers have been on a single theme: modeling. Simulation is a great tool, but only if you have models that tell the simulator what to do. Models vary in type and complexity, but they all share a common purpose: to tell you something about how a device or system works, often in a specific application or under specific operating conditions. But there is a gap, an often very wide gap, between wanting to simulate a design and having a model that tells an accurate story for your system (notice that I did not say “the accurate story” since how you model your system will depend on what you want to know about it – accuracy is a byproduct of purpose).

When it comes to modeling, I find that engineers are generally divided into three groups: give me a model, help me understand the model, and help me develop a model. Depending on project priorities and how critical the need, the same engineer may spend time in each group on a single project.

The “give me a model” group is either under a time crunch to complete the analyses and finish the design, or is not familiar with other modeling options. The advantage for this group is that models are plentiful. They are available from a variety of sources including component manufacturers, third party vendors, in-house modeling groups, and tool suppliers. SPICE models are particularly popular in this category. The disadvantage, however, is twofold: model quality may be suspect, and model functionality may be limited with no way to improve it.

An engineer in the “help me understand the model” group typically has a model but needs to better understand how it works. Requirements for understanding the model range from needing to document the model’s operation, to improving performance by updating or adding functionality. Depending on structure and format, however, understanding a model someone else developed can be a real challenge. For example, have you ever tried to decipher the internal workings of a SPICE macromodel for a PWM controller chip? Not so easy.

For the “help me develop a model” group, either an existing model is not doing the job, or a model search returned zero results. Engineers in this group can either go without, or build a model from scratch. Going without usually means doing manual calculations, and pen, paper, and calculator become the engineer’s most trusted design companions. Funny thing, but not many years ago I visited a group of engineers at a major automotive OEM who claimed this is exactly how they handled much of their design work: reams of paper shuttled between design groups. Apparently modeling and simulation were not a priority. A bit hard to believe, given the complexity of modern automotive design. But I digress. Fortunately, if you are in the “build a model” category, you have options for model format and structure. In working with customers, I find the two most popular approaches are graphical modeling and language-based modeling. I will talk about each of these in future posts.

Post Author

Posted December 10th, 2013, by

Post Tags

, , , , , ,

Post Comments

No Comments

About Mike Jensen's Blog

Views, insights, and commentary on mechatronic system design and analysis. Mike Jensen's Blog

Comments

Add Your Comment

Archives

June 2014
  • Wow Factor
  • May 2014
  • SystemVision 5.10.3
  • March 2014
  • IESF 2014: Military & Aerospace
  • Engineering Oops!
  • Big Engineering
  • January 2014
  • SystemVision Model Wizard
  • December 2013
  • SystemVision 5.10.2
  • Modeling: An Engineer’s Dilemma
  • October 2013
  • What is Your Legacy?
  • September 2013
  • Automotive IESF 2013
  • July 2013
  • Simple Design Solutions
  • June 2013
  • SystemVision 5.10
  • May 2013
  • Engineering Muscle Memory
  • EDA vs. Windows 8
  • March 2013
  • VHDL-AMS Stress Modeling – Part 3
  • January 2013
  • VHDL-AMS Stress Modeling – Part 2
  • VHDL-AMS Stress Modeling – Part 1
  • December 2012
  • Practice! Practice!
  • November 2012
  • Sharing Tool Expertise
  • October 2012
  • Preserving Expertise
  • Virtual Prototyping — Really?
  • Innovations in Motion Control Design
  • September 2012
  • Game Changers
  • Do We Overdesign?
  • August 2012
  • Tsunami Remnants
  • July 2012
  • A New Look at Device Modeling
  • SystemVision 5.9
  • June 2012
  • Veyron Physics
  • May 2012
  • Rooster Tail Engineering
  • April 2012
  • Automotive IESF 2012
  • Teaching and Learning CAN Bus
  • March 2012
  • Analog Modeling – Part 6
  • Analog Modeling – Part 5
  • Analog Modeling – Part 4
  • February 2012
  • Analog Modeling – Part 3
  • Analog Modeling – Part 2
  • January 2012
  • Analog Modeling – Part 1
  • Connecting Tools and Processes
  • December 2011
  • Turning-Off and Tuning-In
  • Use vs. Experience
  • Analyzing the Big Picture
  • November 2011
  • Simulating for Reliability
  • October 2011
  • SystemVision 5.8
  • VHDL-AMS Model Portability — Fact or Fiction?
  • September 2011
  • IESF 2011 Moves to Frankfurt
  • Simulation Troubleshooting
  • August 2011
  • Qualities of VHDL-AMS Quantities
  • Military & Aerospace IESF 2011
  • Touring Johnson Space Center
  • July 2011
  • Engineering versus Science
  • June 2011
  • System Reengineering
  • May 2011
  • Integrating Hardware and Software Design
  • Engine Remote Start
  • Integrated System Design
  • Simulation Experiments (Part 3)
  • April 2011
  • Automotive IESF 2011
  • Pushbutton Cars
  • System Simulation with FEA-Base Motor Models
  • March 2011
  • Simulation Experiments (Part 2)
  • Simulation Experiments (Part 1)
  • Japan: Patience and Grace Amid Disaster
  • Top Gear = Driving Fun
  • February 2011
  • Buoyancy
  • Ideas in Motion
  • January 2011
  • The Mechanical Half of Mechatronics
  • Detroit Auto Show
  • Signal-flow vs Conserved System Modeling
  • SystemVision 5.7…Ready, Set, Go!
  • December 2010
  • SystemVision and Windows 7
  • Friction Vacation
  • Simulation Beyond Volts and Amps (Part 4)
  • November 2010
  • Simulation Beyond Volts and Amps (Part 3)
  • Simulation Beyond Volts and Amps (Part 2)
  • Simulation Beyond Volts and Amps (Part 1)
  • October 2010
  • SAE Convergence Recap (and an Unexpected Surprise)
  • VHDL-AMS Black Belt
  • Converging on SAE Convergence
  • System Design vs System Repair
  • September 2010
  • What’s the “AMS” in VHDL-AMS?
  • How Sensitive is Your System?
  • Do You Trust Your Simulator?
  • August 2010
  • What’s in a SPICE Model?
  • Cycling + Gravity = Pain
  • NI Week: Fun for Engineers
  • June 2010
  • Are You a Flexible Thinker?
  • VHDL-AMS and Switch Hysteresis
  • May 2010
  • VHDL-AMS Revisited
  • Segway to U3-X
  • Atomic Glue
  • March 2010
  • IESF Recap
  • February 2010
  • IESF is Coming…
  • System Level HDL-topia
  • January 2010
  • Mastering Design Abstraction
  • The Joy of Disassembly