Analog Modeling – Part 3

Welcome to the third installment in my Analog Modeling blog series. In Part 1 I wrote about why equations are important for simulation. In Part 2 I suggested a process flow for turning device equations into a simulation model, and introduced the basic structure of a VHDL-AMS model. Now it’s time to begin the model definition process. As I outlined in Part 2, the first step is deciding what you want your model to tell you about the device, which may not be as obvious as it sounds.

The most important thing to remember when deciding what details you need to know about device behavior is this: calculations require CPU time, and CPU time directly affects how many seconds, minutes, and maybe hours will tick away on your wristwatch before the simulation is finished. Saying “I want to know everything there is to know about this device” is okay as long as you understand that the complexity of your model is directly proportional to the number of details you want to know about the device’s operation. I’ll say it again: more complexity means more of your time watching the simulation progress meter chug along.  If you think about it, seldom do you really need to know every single detail about how a device operates. More than likely you will only be interested in 2 or 3 important performance metrics. Let’s use an incandescent lamp model as an example.

An incandescent lamp is designed to turn electricity into lumens. This transformation takes place by connecting a resistive wire, or filament (usually made of tungsten), to a source of electricity. As current passes through the filament, it heats up until it glows. The filament is enclosed in a glass bulb which is typically filled with an inert gas to reduce filament evaporation and oxidation. With this brief introduction in mind, here are some lamp properties that might be interesting to quantify in a simulation:

  • Light intensity
  • Electrical vs. thermal power
  • Efficacy (Lumens per Watt)
  • Filament temperature
  • Rate of filament evaporation
  • Rate of filament oxidation

If you create a lamp model to quantify all of these properties, your model will be quite complex, and potentially compute intensive. Following the analog modeling guidelines mentioned earlier, you need to narrow the options by deciding what you really want the model to tell you about the lamp’s performance. For our discussion, let’s focus on the relationship between the lamp’s electrical and thermal properties.

In my next blog post, Analog Modeling – Part 4, we’ll move to the next step in the analog modeling process and select equations that quantify the lamp’s interactions between electrical and thermal power.

Post Author

Posted February 10th, 2012, by

Post Tags

, , , , , ,

Post Comments

No Comments

About Mike Jensen's Blog

Views, insights, and commentary on mechatronic system design and analysis. Mike Jensen's Blog

Comments

Add Your Comment

Archives

October 2014
  • Reliability vs Robustness
  • June 2014
  • Wow Factor
  • May 2014
  • SystemVision 5.10.3
  • March 2014
  • IESF 2014: Military & Aerospace
  • Engineering Oops!
  • Big Engineering
  • January 2014
  • SystemVision Model Wizard
  • December 2013
  • SystemVision 5.10.2
  • Modeling: An Engineer’s Dilemma
  • October 2013
  • What is Your Legacy?
  • September 2013
  • Automotive IESF 2013
  • July 2013
  • Simple Design Solutions
  • June 2013
  • SystemVision 5.10
  • May 2013
  • Engineering Muscle Memory
  • EDA vs. Windows 8
  • March 2013
  • VHDL-AMS Stress Modeling – Part 3
  • January 2013
  • VHDL-AMS Stress Modeling – Part 2
  • VHDL-AMS Stress Modeling – Part 1
  • December 2012
  • Practice! Practice!
  • November 2012
  • Sharing Tool Expertise
  • October 2012
  • Preserving Expertise
  • Virtual Prototyping — Really?
  • Innovations in Motion Control Design
  • September 2012
  • Game Changers
  • Do We Overdesign?
  • August 2012
  • Tsunami Remnants
  • July 2012
  • A New Look at Device Modeling
  • SystemVision 5.9
  • June 2012
  • Veyron Physics
  • May 2012
  • Rooster Tail Engineering
  • April 2012
  • Automotive IESF 2012
  • Teaching and Learning CAN Bus
  • March 2012
  • Analog Modeling – Part 6
  • Analog Modeling – Part 5
  • Analog Modeling – Part 4
  • February 2012
  • Analog Modeling – Part 3
  • Analog Modeling – Part 2
  • January 2012
  • Analog Modeling – Part 1
  • Connecting Tools and Processes
  • December 2011
  • Turning-Off and Tuning-In
  • Use vs. Experience
  • Analyzing the Big Picture
  • November 2011
  • Simulating for Reliability
  • October 2011
  • SystemVision 5.8
  • VHDL-AMS Model Portability — Fact or Fiction?
  • September 2011
  • IESF 2011 Moves to Frankfurt
  • Simulation Troubleshooting
  • August 2011
  • Qualities of VHDL-AMS Quantities
  • Military & Aerospace IESF 2011
  • Touring Johnson Space Center
  • July 2011
  • Engineering versus Science
  • June 2011
  • System Reengineering
  • May 2011
  • Integrating Hardware and Software Design
  • Engine Remote Start
  • Integrated System Design
  • Simulation Experiments (Part 3)
  • April 2011
  • Automotive IESF 2011
  • Pushbutton Cars
  • System Simulation with FEA-Base Motor Models
  • March 2011
  • Simulation Experiments (Part 2)
  • Simulation Experiments (Part 1)
  • Japan: Patience and Grace Amid Disaster
  • Top Gear = Driving Fun
  • February 2011
  • Buoyancy
  • Ideas in Motion
  • January 2011
  • The Mechanical Half of Mechatronics
  • Detroit Auto Show
  • Signal-flow vs Conserved System Modeling
  • SystemVision 5.7…Ready, Set, Go!
  • December 2010
  • SystemVision and Windows 7
  • Friction Vacation
  • Simulation Beyond Volts and Amps (Part 4)
  • November 2010
  • Simulation Beyond Volts and Amps (Part 3)
  • Simulation Beyond Volts and Amps (Part 2)
  • Simulation Beyond Volts and Amps (Part 1)
  • October 2010
  • SAE Convergence Recap (and an Unexpected Surprise)
  • VHDL-AMS Black Belt
  • Converging on SAE Convergence
  • System Design vs System Repair
  • September 2010
  • What’s the “AMS” in VHDL-AMS?
  • How Sensitive is Your System?
  • Do You Trust Your Simulator?
  • August 2010
  • What’s in a SPICE Model?
  • Cycling + Gravity = Pain
  • NI Week: Fun for Engineers
  • June 2010
  • Are You a Flexible Thinker?
  • VHDL-AMS and Switch Hysteresis
  • May 2010
  • VHDL-AMS Revisited
  • Segway to U3-X
  • Atomic Glue
  • March 2010
  • IESF Recap
  • February 2010
  • IESF is Coming…
  • System Level HDL-topia
  • January 2010
  • Mastering Design Abstraction
  • The Joy of Disassembly