Integrating Hardware and Software Design

Many mechatronic system capabilities depend on software as well as hardware. Hardware and software development methodologies, however, are quite often seperated within a company despite the obvious advantages of an integrated flow. In some ways, trying to combine hardware and software design into a single, integrated flow is much like trying to make a great salad dressing using oil and vinegar: getting the two to mix well together can be a challenge, but the end result is well worth the effort.

Though a bit simplified, a typical system design flow with both hardware and software elements often looks like the following diagram. While the flows may start out together with initial system discussions, it isn’t long before the software team returns to their lab to write the software, and the hardware team returns to their own lab to simulate, analyze, and prototype the system hardware. Each team has their own development processes, and the software and hardware are seldom integrated until the integration and test phase late in the development cycle – too late, sometimes, to enable cost effective changes.

design_flow_separate

 

Compare this with the integrated flow illustrated in the following diagram. Hardware and software design are integrated, via a virtual prototyping environment, from the very beginning of the development cycle. Design partitioning decisions are made early in the design cycle, and requirements are defined and refined together. Design sync and verification tasks are scheduled at predetermined points throughout the integrated design flow. Concurrent prototype and test activities follow the design phase and flow naturally from the integrated design and verification process.

design_flow_integrated

 

Naturally, implementing an integrated hardware/software development flow places considerable requirements on design tools. The hardware team needs a design environment with which they can model, simulate, and analyze a complete mechatronic system – in essence, an environment where they can create a virtual prototype of the system’s hardware. The software team needs a bridge that integrates their software development efforts into the hardware modeling and analysis environment.

Mentor Graphics offers a variety of development tools for system design and verification, including SystemVision and SystemVision conneXion (SVX). SystemVision is a powerful development environment optimized for modeling and analyzing mechatronic systems. And SystemVision conneXion is an extensible application that links SystemVision with multiple processes, including C++ and Java development environments and executables, for integrating software development activities into a system simulation.

Post Author

Posted May 31st, 2011, by

Post Tags

, , , , , ,

Post Comments

No Comments

About Mike Jensen's Blog

Views, insights, and commentary on mechatronic system design and analysis. Mike Jensen's Blog

Comments

Add Your Comment

Archives

October 2014
  • Reliability vs Robustness
  • June 2014
  • Wow Factor
  • May 2014
  • SystemVision 5.10.3
  • March 2014
  • IESF 2014: Military & Aerospace
  • Engineering Oops!
  • Big Engineering
  • January 2014
  • SystemVision Model Wizard
  • December 2013
  • SystemVision 5.10.2
  • Modeling: An Engineer’s Dilemma
  • October 2013
  • What is Your Legacy?
  • September 2013
  • Automotive IESF 2013
  • July 2013
  • Simple Design Solutions
  • June 2013
  • SystemVision 5.10
  • May 2013
  • Engineering Muscle Memory
  • EDA vs. Windows 8
  • March 2013
  • VHDL-AMS Stress Modeling – Part 3
  • January 2013
  • VHDL-AMS Stress Modeling – Part 2
  • VHDL-AMS Stress Modeling – Part 1
  • December 2012
  • Practice! Practice!
  • November 2012
  • Sharing Tool Expertise
  • October 2012
  • Preserving Expertise
  • Virtual Prototyping — Really?
  • Innovations in Motion Control Design
  • September 2012
  • Game Changers
  • Do We Overdesign?
  • August 2012
  • Tsunami Remnants
  • July 2012
  • A New Look at Device Modeling
  • SystemVision 5.9
  • June 2012
  • Veyron Physics
  • May 2012
  • Rooster Tail Engineering
  • April 2012
  • Automotive IESF 2012
  • Teaching and Learning CAN Bus
  • March 2012
  • Analog Modeling – Part 6
  • Analog Modeling – Part 5
  • Analog Modeling – Part 4
  • February 2012
  • Analog Modeling – Part 3
  • Analog Modeling – Part 2
  • January 2012
  • Analog Modeling – Part 1
  • Connecting Tools and Processes
  • December 2011
  • Turning-Off and Tuning-In
  • Use vs. Experience
  • Analyzing the Big Picture
  • November 2011
  • Simulating for Reliability
  • October 2011
  • SystemVision 5.8
  • VHDL-AMS Model Portability — Fact or Fiction?
  • September 2011
  • IESF 2011 Moves to Frankfurt
  • Simulation Troubleshooting
  • August 2011
  • Qualities of VHDL-AMS Quantities
  • Military & Aerospace IESF 2011
  • Touring Johnson Space Center
  • July 2011
  • Engineering versus Science
  • June 2011
  • System Reengineering
  • May 2011
  • Integrating Hardware and Software Design
  • Engine Remote Start
  • Integrated System Design
  • Simulation Experiments (Part 3)
  • April 2011
  • Automotive IESF 2011
  • Pushbutton Cars
  • System Simulation with FEA-Base Motor Models
  • March 2011
  • Simulation Experiments (Part 2)
  • Simulation Experiments (Part 1)
  • Japan: Patience and Grace Amid Disaster
  • Top Gear = Driving Fun
  • February 2011
  • Buoyancy
  • Ideas in Motion
  • January 2011
  • The Mechanical Half of Mechatronics
  • Detroit Auto Show
  • Signal-flow vs Conserved System Modeling
  • SystemVision 5.7…Ready, Set, Go!
  • December 2010
  • SystemVision and Windows 7
  • Friction Vacation
  • Simulation Beyond Volts and Amps (Part 4)
  • November 2010
  • Simulation Beyond Volts and Amps (Part 3)
  • Simulation Beyond Volts and Amps (Part 2)
  • Simulation Beyond Volts and Amps (Part 1)
  • October 2010
  • SAE Convergence Recap (and an Unexpected Surprise)
  • VHDL-AMS Black Belt
  • Converging on SAE Convergence
  • System Design vs System Repair
  • September 2010
  • What’s the “AMS” in VHDL-AMS?
  • How Sensitive is Your System?
  • Do You Trust Your Simulator?
  • August 2010
  • What’s in a SPICE Model?
  • Cycling + Gravity = Pain
  • NI Week: Fun for Engineers
  • June 2010
  • Are You a Flexible Thinker?
  • VHDL-AMS and Switch Hysteresis
  • May 2010
  • VHDL-AMS Revisited
  • Segway to U3-X
  • Atomic Glue
  • March 2010
  • IESF Recap
  • February 2010
  • IESF is Coming…
  • System Level HDL-topia
  • January 2010
  • Mastering Design Abstraction
  • The Joy of Disassembly